Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Parama Dutta"'
Publikováno v:
Axioms, Vol 10, Iss 3, p 233 (2021)
Let R be a finite ring and r∈R. The r-noncommuting graph of R, denoted by ΓRr, is a simple undirected graph whose vertex set is R and two vertices x and y are adjacent if and only if [x,y]≠r and [x,y]≠−r. In this paper, we obtain expressions
Externí odkaz:
https://doaj.org/article/422341ac114c49d5aa1b67ad73422caa
Autor:
Parama Dutta, Rajat Kanti Nath
Publikováno v:
Indian Journal of Pure and Applied Mathematics. 52:1-10
A simple undirected graph $$\Gamma _G$$ whose vertex set is the set of non-central elements of a finite group G and two vertices x and y are adjacent if they commute is called commuting graph of G. In this paper, we compute energy, Laplacian energy a
Autor:
Parama Dutta, Rajat Kanti Nath
Publikováno v:
Volume: 49, Issue: 1 389-398
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
Let $H \subseteq K$ be two subgroups of a finite group $G$ and $\mathrm{Aut}(K)$ the automorphism group of $K$. In this paper, we consider the generalized autocommuting probability of $G$ relative to its subgroups $H$ and $K$, denoted by ${Pr}_g(H,\m
Autor:
Parama Dutta, Rajat Kanti Nath
Publikováno v:
Proyecciones (Antofagasta) v.39 n.3 2020
SciELO Chile
CONICYT Chile
instacron:CONICYT
Proyecciones (Antofagasta), Volume: 39, Issue: 3, Pages: 679-691, Published: JUN 2020
SciELO Chile
CONICYT Chile
instacron:CONICYT
Proyecciones (Antofagasta), Volume: 39, Issue: 3, Pages: 679-691, Published: JUN 2020
We consider the probability that a randomly chosen element of a subgroup of a finite group G is fixed by an automorphism of G. We obtain several bounds for this probability and characterize some finite groups with respect to this probability.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74914c8b57bae8487f2d70f1c3b8b788
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300679
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300679
Autor:
Parama Dutta, Manjil P. Saikia
For a positive integer $n$, if $\sigma(n)$ denotes the sum of the positive divisors of $n$, then $n$ is called a deficient perfect number if $\sigma(n)=2n-d$ for some positive divisor $d$ of $n$. In this paper, we prove some results about odd deficie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10b13b15e49eeeb9f1bd5f7f9bc7202a
Autor:
Parama Dutta, Rajat Kanti Nath
Publikováno v:
Hacettepe Journal of Mathematics and Statistics. 48
Let $H$ be a subgroup of a finite group $G$ and Aut$(G)$ be the automorphism group of $G$. In this paper we introduce and study the probability that the autocommutator of a randomly chosen pair of elements, one from $H$ and the other from Aut$(G)$ ,
Autor:
Rajat Kanti Nath, Parama Dutta
In this paper we study the probability that the commutator of a randomly chosen pair of elements, one from a subring of a finite ring and other from the ring itself equals to a given element of the ring.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a63926f41f9ccbd5f06f3fe4c82c442
http://arxiv.org/abs/1708.05142
http://arxiv.org/abs/1708.05142
Autor:
Parama Dutta, Rajat Kanti Nath
Let $G$ be a finite group and $\Aut(G)$ the automorphism group of $G$. The autocommuting probability of $G$, denoted by $\Pr(G, \Aut(G))$, is the probability that a randomly chosen automorphism of $G$ fixes a randomly chosen element of $G$. In this p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f825660606b9666469d9204505792caf
Autor:
Rajat Kanti Nath, Parama Dutta
Publikováno v:
Asian-European Journal of Mathematics. 11:1850023
The aim of this paper is to study the probability that the commutator of an arbitrarily chosen pair of elements, each from two different additive subgroups of a finite non-commutative ring equals a given element of that ring. We obtain several result