Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Parallel transport frame"'
Autor:
Mervat Elzawy
Publikováno v:
Journal of the Egyptian Mathematical Society, Vol 25, Iss 3, Pp 268-271 (2017)
The purpose of this paper is to study Smarandache curves in the 4-dimensional Euclidean space E4, and to obtain the Frenet–Serret and Bishop invariants for the Smarandache curves in E4. The first, the second and the third curvatures of Smarandache
Externí odkaz:
https://doaj.org/article/50868836400443bcac971bd8b99ce4f2
Autor:
Talat Körpınar, Essin Turhan
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 31, Iss 2, Pp 213-217 (2013)
In this paper, we study biharmonic curves according to parallel transport frame in E⁴. We give some characterizations for curvatures of a biharmonic curve in E⁴.
Externí odkaz:
https://doaj.org/article/afd5dc6a049a4b9397ab5c31db36d065
Publikováno v:
New Trends in Mathematical Sciences, Vol 5, Iss 2, Pp 61-68 (2017)
Volume: 5, Issue: 2 61-68
New Trends in Mathematical Sciences
Volume: 5, Issue: 2 61-68
New Trends in Mathematical Sciences
The position vector of a regular curve in Euclidean n-space En can be written as a linear combination of its parallel transportvectors. In the present study, we characterize such curves in terms of their curvature functions. Further, we obtain some r
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Volume: 7, Issue: 1 16-24
Konuralp Journal of Mathematics
Konuralp Journal of Mathematics
The aim of this paper is to introduce inclined curves according to parallel transport frame. This paper begins by defined a vector field D called Darboux vector field of an inclined curve in E 4. It will then go on to an alternative characterization
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=tubitakulakb::b954e0fce7a1a407397968a647c52a54
https://dergipark.org.tr/tr/pub/konuralpjournalmath/issue/31492/525932
https://dergipark.org.tr/tr/pub/konuralpjournalmath/issue/31492/525932
Publikováno v:
Volume: 23, Issue: 5 801-809
Sakarya University Journal of Science
Sakarya University Journal of Science
Bu çalışmada, E^4 4-boyutlu Öklid uzayında, merkez eğrisinin paralel öteleme çatısı vektörleri yardımıyla tanımlanan kanal yüzeyini örneği ile verdik. Bu yüzeyin eğrilik özelliklerini paralel öteleme çatısına göre eğrilik fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9bb4a0dbc42b1510052c1807ab58ae40
https://dergipark.org.tr/tr/pub/saufenbilder/issue/44066/524471
https://dergipark.org.tr/tr/pub/saufenbilder/issue/44066/524471
Publikováno v:
2018 International Symposium on Medical Robotics (ISMR)
ISMR
International Symposium on Medical Robotics
ISMR
International Symposium on Medical Robotics
Needle steering systems are a topic of increasing research interest due to the many potential advantages associated with the ability to reach deep-seated targets while avoiding obstacles. Existing embodiments, such as those designed around a fixed be
Autor:
Yılmaz Tunçer, Murat Kemal Karacan
Publikováno v:
Acta et Commentationes Universitatis Tartuensis de Mathematica. 19:75-85
In this study we have defined Bäcklund transformations of curves according to Bishop frame preserving the natural curvatures under certain assumptions in Minkowski 3-space. © 2015, University of Tartu. All rights reserved.
Autor:
Sezgin Büyükkütük, Günay Öztürk
Publikováno v:
New Trends in Mathematical Sciences, Vol 3, Iss 4, Pp 171-178 (2015)
In this study, we consider a regular curve in Euclidean 4-space E^4 whose position vector is written as a linear combination of its parallel transport frame vectors. We characterize constant ratio curves in terms of their curvature functions. Further
Autor:
Essin Turhan, Talat Körpinar
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 31, Iss 2, Pp 213-217 (2013)
In this paper, we study biharmonic curves according to parallel transport frame in E⁴. We give some characterizations for curvatures of a biharmonic curve in E⁴.