Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Paradiso Fabio"'
Autor:
Paradiso Fabio
Publikováno v:
Complex Manifolds, Vol 8, Iss 1, Pp 196-207 (2021)
We study locally conformally balanced metrics on almost abelian Lie algebras, namely solvable Lie algebras admitting an abelian ideal of codimension one, providing characterizations in every dimension. Moreover, we classify six-dimensional almost abe
Externí odkaz:
https://doaj.org/article/0bd8b35ff21c4e359dce6eb086017d66
Autor:
Fino, Anna, Paradiso, Fabio
We complete the classification of six-dimensional strongly unimodular almost nilpotent Lie algebras admitting complex structures. For several cases we describe the space of complex structures up to isomorphism. As a consequence we determine the six-d
Externí odkaz:
http://arxiv.org/abs/2306.03485
Autor:
Fino, Anna, Paradiso, Fabio
In this paper we investigate the existence of invariant SKT, balanced and generalized K\"ahler structures on compact quotients $\Gamma \backslash G$, where $G$ is an almost nilpotent Lie group whose nilradical has one-dimensional commutator and $\Gam
Externí odkaz:
http://arxiv.org/abs/2112.11960
Autor:
Paradiso, Fabio
We study locally conformally balanced metrics on almost abelian Lie algebras, namely solvable Lie algebras admitting an abelian ideal of codimension one, providing characterizations in every dimension. Moreover, we classify six-dimensional almost abe
Externí odkaz:
http://arxiv.org/abs/2101.05683
Autor:
Fino, Anna, Paradiso, Fabio
We study balanced Hermitian structures on almost abelian Lie algebras, i.e. on Lie algebras with a codimension-one abelian ideal. In particular, we classify six-dimensional almost abelian Lie algebras which carry a balanced structure. It has been con
Externí odkaz:
http://arxiv.org/abs/2011.09992
Autor:
Fino, Anna, Paradiso, Fabio
We study left-invariant generalized K\"ahler structures on almost abelian Lie groups, i.e., on solvable Lie groups with a codimension-one abelian normal subgroup. In particular, we classify six-dimensional almost abelian Lie groups which admit a left
Externí odkaz:
http://arxiv.org/abs/2008.00458
Autor:
Paradiso, Fabio
We define solitons for the generalized Ricci flow on an exact Courant algebroid, building on the definitions of M. Garcia-Fernandez and J. Streets. We then define a family of flows for left-invariant Dorfman brackets on an exact Courant algebroid ove
Externí odkaz:
http://arxiv.org/abs/2002.01514
Autor:
Fino, Anna, Paradiso, Fabio
Publikováno v:
In Journal of Pure and Applied Algebra February 2023 227(2)
Autor:
Fino, Anna, Paradiso, Fabio
Publikováno v:
In Journal of Algebra 1 November 2022 609:861-925
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.