Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Papageorgiou, Anargyros"'
Publikováno v:
Quantum Information and Computation. 16, no. 3&4 (2016): 0197-0236
Quantum algorithms for scientific computing require modules implementing fundamental functions, such as the square root, the logarithm, and others. We require algorithms that have a well-controlled numerical error, that are uniformly scalable and rev
Externí odkaz:
http://arxiv.org/abs/1511.08253
Publikováno v:
Quantum Information Processing 14.4 (2015): 1151-1178
Approximating ground and a fixed number of excited state energies, or equivalently low order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with
Externí odkaz:
http://arxiv.org/abs/1508.01544
In 2011, the fundamental gap conjecture for Schr\"odinger operators was proven. This can be used to estimate the ground state energy of the time-independent Schr\"odinger equation with a convex potential and relative error \epsilon. Classical determi
Externí odkaz:
http://arxiv.org/abs/1309.6578
Publikováno v:
Phys. Rev. A 88, 022316 (2013)
We introduce the concept of strong quantum speedup. We prove that approximating the ground state energy of an instance of the time-independent Schr\"odinger equation, with $d$ degrees of freedom, $d$ large, enjoys strong exponential quantum speedup.
Externí odkaz:
http://arxiv.org/abs/1307.7488
Publikováno v:
New J. Phys. 15 (2013) 013021
The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the s
Externí odkaz:
http://arxiv.org/abs/1207.2485
Publikováno v:
Mathematics of Computation, 82 (2013), 2293-2304
Estimating the ground state energy of a multiparticle system with relative error $\e$ using deterministic classical algorithms has cost that grows exponentially with the number of particles. The problem depends on a number of state variables $d$ that
Externí odkaz:
http://arxiv.org/abs/1008.4294
Autor:
Papageorgiou, Anargyros, Zhang, Chi
We study the efficiency of algorithms simulating a system evolving with Hamiltonian $H=\sum_{j=1}^m H_j$. We consider high order splitting methods that play a key role in quantum Hamiltonian simulation. We obtain upper bounds on the number of exponen
Externí odkaz:
http://arxiv.org/abs/1005.1318
We design an adiabatic quantum algorithm for the counting problem, i.e., approximating the proportion, $\alpha$, of the marked items in a given database. As the quantum system undergoes a designed cyclic adiabatic evolution, it acquires a Berry phase
Externí odkaz:
http://arxiv.org/abs/0805.1387
Autor:
Jaksch, Peter, Papageorgiou, Anargyros
We present an efficient method for preparing the initial state required by the eigenvalue approximation quantum algorithm of Abrams and Lloyd. Our method can be applied when solving continuous Hermitian eigenproblems, e.g., the Schroedinger equation,
Externí odkaz:
http://arxiv.org/abs/quant-ph/0308016
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.