Zobrazeno 1 - 10
of 178
pro vyhledávání: '"Papadopoulou, Evanthia"'
Publikováno v:
Discrete Applied Mathematics, 319:141-148, 2022
We present a generalization of a combinatorial result by Aggarwal, Guibas, Saxe and Shor [Discrete & Computational Geometry, 1989] on a linear-time algorithm that selects a constant fraction of leaves, with pairwise disjoint neighborhoods, from a bin
Externí odkaz:
http://arxiv.org/abs/2312.10245
Autor:
Alegría, Carlos, Mantas, Ioannis, Papadopoulou, Evanthia, Savić, Marko, Seara, Carlos, Suderland, Martin
Publikováno v:
In Proceedings of the 29th Annual European Symposium on Algorithms (ESA 2021), pages 5:1-5:16, 2021
We study the Voronoi Diagram of Rotating Rays, a Voronoi structure where the input sites are rays and the distance function between a point and a site/ray, is the counterclockwise angular distance. This novel Voronoi diagram is motivated by illuminat
Externí odkaz:
http://arxiv.org/abs/2304.11429
Autor:
Papadopoulou, Evanthia
Any system of bisectors (in the sense of abstract Voronoi diagrams) defines an arrangement of simple curves in the plane. We define Voronoi-like graphs on such an arrangement, which are graphs whose vertices are locally Voronoi. A vertex $v$ is calle
Externí odkaz:
http://arxiv.org/abs/2303.06669
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Updating an abstract Voronoi diagram after deletion of one site in linear time has been a well-known open problem; similarly, for concrete Voronoi diagrams of non-point sites. In this paper, we present an expected linear-time algorithm to update an a
Externí odkaz:
http://arxiv.org/abs/1803.05372
Publikováno v:
In Discrete Applied Mathematics 15 October 2022 319:141-148
Publikováno v:
Discrete & Computational Geometry; Oct2024, Vol. 72 Issue 3, p1304-1332, 29p
This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagra
Externí odkaz:
http://arxiv.org/abs/1612.01335
We present an expected linear-time algorithm to construct the farthest-segment Voronoi diagram, given the sequence of its faces at infinity. This sequence forms a Davenport-Schinzel sequence of order 3 and it can be computed in O(n log n) time, where
Externí odkaz:
http://arxiv.org/abs/1411.2816