Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Paolo Palmerini"'
Publikováno v:
Cluster Computing. 3:201-213
We present a framework to design efficient and portable HPF applications which exploit a mixture of task and data parallelism. According to the framework proposed, data parallelism is restricted within HPF modules, and task parallelism is achieved by
Publikováno v:
Scopus-Elsevier
Probabilistic cellular automata are prototypes of nonequilibrium critical phenomena. This class of models includes among others the directed percolation problem (Domany-Kinzel model) and the dynamical Ising model. The critical properties of these mod
Autor:
Jeevan Pathuri, Nilanjana De, Paolo Palmerini, Nagender Parimi, Benjarath Phoophakdee, Feng Gao, Mohammed J. Zaki, Joe Urban
Publikováno v:
Constraint-Based Mining and Inductive Databases ISBN: 9783540313311
Constraint-Based Mining and Inductive Databases
Constraint-Based Mining and Inductive Databases
Frequent Pattern Mining (FPM) is a very powerful paradigm for mining informative and useful patterns in massive, complex datasets. In this paper we propose the Data Mining Template Library, a collection of generic containers and algorithms for data m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::57a0615be0208ff6be76d5308e236de2
https://doi.org/10.1007/11615576_17
https://doi.org/10.1007/11615576_17
Autor:
Paolo Palmerini, Ranieri Baraglia
Publikováno v:
ITCC
During their navigation, Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Sophisticated data mining processes are needed for this knowledge to be extracted, understood and used. In this pap
Publikováno v:
ITCC (1)
Journal of Digital Information Management 2 (2004): 104–108.
ITCC'04-International Conference on Information Technology: Coding and Computing, pp. 392–397, Las Vegas, USA, 5-7 April 2004
info:cnr-pdr/source/autori:Silvestri F.; Baraglia R.; Palmerini P.; Serranò M./titolo:On-line generation of suggestions for Web users/doi:/rivista:Journal of Digital Information Management/anno:2004/pagina_da:104/pagina_a:108/intervallo_pagine:104–108/volume:2
info:cnr-pdr/source/autori:Silvestri F.; Baraglia R.; Palmerini P.; Serranò M./congresso_nome:ITCC'04-International Conference on Information Technology: Coding and Computing/congresso_luogo:Las Vegas, USA/congresso_data:5-7 April 2004/anno:2004/pagina_da:392/pagina_a:397/intervallo_pagine:392–397
Journal of Digital Information Management 2 (2004): 104–108.
ITCC'04-International Conference on Information Technology: Coding and Computing, pp. 392–397, Las Vegas, USA, 5-7 April 2004
info:cnr-pdr/source/autori:Silvestri F.; Baraglia R.; Palmerini P.; Serranò M./titolo:On-line generation of suggestions for Web users/doi:/rivista:Journal of Digital Information Management/anno:2004/pagina_da:104/pagina_a:108/intervallo_pagine:104–108/volume:2
info:cnr-pdr/source/autori:Silvestri F.; Baraglia R.; Palmerini P.; Serranò M./congresso_nome:ITCC'04-International Conference on Information Technology: Coding and Computing/congresso_luogo:Las Vegas, USA/congresso_data:5-7 April 2004/anno:2004/pagina_da:392/pagina_a:397/intervallo_pagine:392–397
The knowledge extracted from the analysis of historical information of a web server can be used to develop personalization or recommendation systems. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the dat
Autor:
Paolo Pesciullesi, Salvatore Orlando, Raffaele Perego, Paolo Palmerini, Marco Vanneschi, Marco Danelutto, Domenico Laforenza, Ranieri Baraglia
Publikováno v:
11th Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp. 193–200, Genova, 5-7 February 2003
info:cnr-pdr/source/autori:Baraglia R.; Danelutto M.; Laforenza D.; Orlando S.; Palmerini P.; Pesciullesi P.; Perego R.; Vanneschi M./congresso_nome:11th Euromicro Conference on Parallel, Distributed and Network-Based Processing/congresso_luogo:Genova/congresso_data:5-7 February 2003/anno:2003/pagina_da:193/pagina_a:200/intervallo_pagine:193–200
PDP
info:cnr-pdr/source/autori:Baraglia R.; Danelutto M.; Laforenza D.; Orlando S.; Palmerini P.; Pesciullesi P.; Perego R.; Vanneschi M./congresso_nome:11th Euromicro Conference on Parallel, Distributed and Network-Based Processing/congresso_luogo:Genova/congresso_data:5-7 February 2003/anno:2003/pagina_da:193/pagina_a:200/intervallo_pagine:193–200
PDP
This paper presents ASSISTCONF, a graphical user interface designed to configure an ASSIST program and to run it on a Grid platform. ASSIST (A Software development System based upon Integrated Skeleton Technology) is a new programming environment for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48ec7d2bdcd06e39fb8248df8c751a36
http://hdl.handle.net/11568/82479
http://hdl.handle.net/11568/82479
Publikováno v:
Euro-Par 2002, Parallel Processing, 8th International Euro-Par Conference, pp. 375–384, Paderborn, Germany, August 2002
info:cnr-pdr/source/autori:Orlando S.; Palmerini P.; Perego R.; Silvestri F./congresso_nome:Euro-Par 2002, Parallel Processing, 8th International Euro-Par Conference/congresso_luogo:Paderborn, Germany/congresso_data:August 2002/anno:2002/pagina_da:375/pagina_a:384/intervallo_pagine:375–384
Scopus-Elsevier
Euro-Par 2002 Parallel Processing ISBN: 9783540440499
Euro-Par
info:cnr-pdr/source/autori:Orlando S.; Palmerini P.; Perego R.; Silvestri F./congresso_nome:Euro-Par 2002, Parallel Processing, 8th International Euro-Par Conference/congresso_luogo:Paderborn, Germany/congresso_data:August 2002/anno:2002/pagina_da:375/pagina_a:384/intervallo_pagine:375–384
Scopus-Elsevier
Euro-Par 2002 Parallel Processing ISBN: 9783540440499
Euro-Par
Increasingly the datasets used for data mining are becoming huge and physically distributed. Since the distributed knowledge discovery process is both data and computational intensive, the Grid is a natural platform for deploying a high performance d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b6af579a68fd31b682a82ebc484fb6f
http://www.cnr.it/prodotto/i/91595
http://www.cnr.it/prodotto/i/91595
Publikováno v:
Scopus-Elsevier
IEEE International Conference on Data Mining (ICDM 2002), pp. 338–345, Maebashi City, Japan, 9-12 December 2002
info:cnr-pdr/source/autori:Orlando S.; Palmerini P.; Perego R.; Silvestri F./congresso_nome:IEEE International Conference on Data Mining (ICDM 2002)/congresso_luogo:Maebashi City, Japan/congresso_data:9-12 December 2002/anno:2002/pagina_da:338/pagina_a:345/intervallo_pagine:338–345
ICDM
IEEE International Conference on Data Mining (ICDM 2002), pp. 338–345, Maebashi City, Japan, 9-12 December 2002
info:cnr-pdr/source/autori:Orlando S.; Palmerini P.; Perego R.; Silvestri F./congresso_nome:IEEE International Conference on Data Mining (ICDM 2002)/congresso_luogo:Maebashi City, Japan/congresso_data:9-12 December 2002/anno:2002/pagina_da:338/pagina_a:345/intervallo_pagine:338–345
ICDM
The performance of an algorithm that mines frequent sets from transactional databases may severely depend on the specific features of the data being analyzed. Moreover, some architectural characteristics of the computational platform used - e.g. the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::297ee772cdbb6cc3af522b236972b12f
http://hdl.handle.net/10278/8745
http://hdl.handle.net/10278/8745
Publikováno v:
Data Warehousing and Knowledge Discovery, Third International Conference, pp. 71–82, Munich, Germany, 5-7 september 2001
info:cnr-pdr/source/autori:Orlando S.; Palmerini P.; Perego R./congresso_nome:Data Warehousing and Knowledge Discovery, Third International Conference/congresso_luogo:Munich, Germany/congresso_data:5-7 september 2001/anno:2001/pagina_da:71/pagina_a:82/intervallo_pagine:71–82
Data Warehousing and Knowledge Discovery ISBN: 9783540425533
DaWaK
info:cnr-pdr/source/autori:Orlando S.; Palmerini P.; Perego R./congresso_nome:Data Warehousing and Knowledge Discovery, Third International Conference/congresso_luogo:Munich, Germany/congresso_data:5-7 september 2001/anno:2001/pagina_da:71/pagina_a:82/intervallo_pagine:71–82
Data Warehousing and Knowledge Discovery ISBN: 9783540425533
DaWaK
In this paper we propose DCP, a new algorithm for solving the Frequent Set Counting problem, which enhances Apriori. Our goal was to optimize the initial iterations of Apriori, i.e. the most time consuming ones when datasets characterized by short or
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83e7011663d9f56191d46df6754025dd
http://hdl.handle.net/10278/13951
http://hdl.handle.net/10278/13951