Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Paolo Luzzini"'
Publikováno v:
ESAIM Math. Model. Numer. Anal.
We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic imageϕ(∂Ω) of a reference set ∂Ω and we present some real
Autor:
Paolo Musolino, Paolo Luzzini
Publikováno v:
Networks & Heterogeneous Media. 15:581-603
We consider the effective conductivity \begin{document}$ \lambda^{\mathrm{eff}} $\end{document} of a periodic two-phase composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material. Then w
Publikováno v:
Inverse Problems
We consider the acoustic field scattered by a bounded impenetrable obstacle and we study its dependence upon a certain set of parameters. As usual, the problem is modeled by an exterior Dirichlet problem for the Helmholtz equation Δu + k 2 u = 0. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::447d3b06c595cfe0413505215506dc5f
https://hdl.handle.net/11577/3471581
https://hdl.handle.net/11577/3471581
Autor:
Paolo Luzzini, Michele Zaccaron
We study the eigenvalues of time-harmonic Maxwell's equations in a cavity upon changes in the electric permittivity $\varepsilon$ of the medium. We prove that all the eigenvalues, both simple and multiple, are locally Lipschitz continuous with respec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab3a99689f0aedd9c6c7783710ebbf67
Publikováno v:
Journal of Mathematical Analysis and Applications. 477:1369-1395
We study the behavior of the longitudinal flow along a periodic array of cylinders upon perturbations of the shape of the cross section of the cylinders and the periodicity structure, when a Newtonian fluid is flowing at low Reynolds numbers around t
We consider the spectral problem for the Grushin Laplacian subject to homogeneous Dirichlet boundary conditions on a bounded open subset of $${\mathbb {R}}^N$$ R N . We prove that the symmetric functions of the eigenvalues depend real analytically up
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7166048cbe837d686c73749a9cc171d
http://hdl.handle.net/10278/3744855
http://hdl.handle.net/10278/3744855
We provide a direct proof of Weyl's law for the buckling eigenvalues of the biharmonic operator on a wide class of domains of $\mathbb R^d$ including bounded Lipschitz domains. The proof relies on asymptotically sharp lower and upper bounds that we d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be37929c03d5dde00ba6b5519bd70c98
Publikováno v:
Analysis. 38:167-193
We prove an explicit formula for the tangential derivatives of the double layer heat potential. By exploiting such a formula, we prove the validity of a regularizing property for the integral operator associated to the double layer heat potential in
Autor:
Paolo Musolino, Paolo Luzzini
Publikováno v:
Integral Methods in Science and Engineering ISBN: 9783030160760
We consider two space-periodic transmission problems for the heat equation. By means of space-periodic layer heat potentials, we convert the problems into systems of integral equations. Then we establish the invertibility of the operators appearing i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1de89892aa652d22c07e91284dc70776
http://hdl.handle.net/10278/3722534
http://hdl.handle.net/10278/3722534