Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Pantograph differential equation"'
Autor:
Musa Cakmak, Sertan Alkan
Publikováno v:
Alexandria Engineering Journal, Vol 61, Iss 4, Pp 2651-2661 (2022)
In this paper, Fibonacci collocation method is firstly used for approximately solving a class of systems of nonlinear Pantograph differential equations with initial conditions. The problem is firstly reduced into a nonlinear algebraic system via coll
Externí odkaz:
https://doaj.org/article/dae526a322d046de95937a51ed59cdfc
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-14 (2021)
Abstract In this paper, we consider initial value problems for two different classes of implicit ϕ-Hilfer fractional pantograph differential equations. We use different approach that is based on α − ψ $\alpha -\psi $ -contraction mappings to dem
Externí odkaz:
https://doaj.org/article/ebc9aad3852f4596abb545f36831bd3a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-21 (2020)
Abstract In this work, we reformulate and investigate the well-known pantograph differential equation by applying newly-defined conformable operators in both Caputo and Riemann–Liouville settings simultaneously for the first time. In fact, we deriv
Externí odkaz:
https://doaj.org/article/76bf3fc6c558418594af80b001efd748
Autor:
Idris Ahmed, Poom Kumam, Thabet Abdeljawad, Fahd Jarad, Piyachat Borisut, Musa Ahmed Demba, Wiyada Kumam
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-19 (2020)
Abstract The present paper describes the implicit fractional pantograph differential equation in the context of generalized fractional derivative and anti-periodic conditions. We formulated the Green’s function of the proposed problems. With the ai
Externí odkaz:
https://doaj.org/article/8fc6ed76529143daaf7ee1358472e24f
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-15 (2020)
Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of
Externí odkaz:
https://doaj.org/article/58461b7286154466a67d4879aa0baa70
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-16 (2020)
Abstract This research work is related to studying a class of special type delay implicit fractional order differential equations under anti-periodic boundary conditions. With the help of classical fixed point theory due to Schauder and Banach, we de
Externí odkaz:
https://doaj.org/article/c925c1987f3248e38c30ee8b4683dfb7
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
H. Ebrahimi, K. Sadri
Publikováno v:
Iranian Journal of Numerical Analysis and Optimization, Vol 9, Iss 1, Pp 37-68 (2019)
The aim of the current paper is to construct the shifted fractional-order Jacobi functions (SFJFs) based on the Jacobi polynomials to numerically solve the fractional-order pantograph differential equations. To achieve this purpose, first the operati
Externí odkaz:
https://doaj.org/article/163180e63cae425da415f0ad3b6618b0
Autor:
Amr Abou-Senna, Boping Tian
Publikováno v:
Mathematics, Vol 10, Iss 17, p 3137 (2022)
The stability analysis of the numerical solutions of stochastic models has gained great interest, but there is not much research about the stability of stochastic pantograph differential equations. This paper deals with the almost sure exponential st
Externí odkaz:
https://doaj.org/article/28880943f91d4b28b45ede6af95394e9