Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Pantić, Olga"'
We prove that the transfer digraph ${\cal D}^*_{C,m}$ needed for the enumeration of 2-factors in the thin cylinder $TnC_{m}(n)$, torus $TG_{m}(n)$ and Klein bottle $KB_m(n)$ (all grid graphs of the fixed width $m$ and with $m \cdot n$ vertices), when
Externí odkaz:
http://arxiv.org/abs/2212.13779
In this paper, we prove that all but one of the components of the transfer digraph ${\cal D}^*_m$ needed for the enumeration of 2-factors in the rectangular, thick cylinder and Moebius strip grid graphs of the fixed width $m$ $(m \in N)$ are bipartit
Externí odkaz:
http://arxiv.org/abs/2212.00317
We propose an algorithm for obtaining the common transfer digraph $ D^*_m$ for enumeration of 2-factors in graphs from the title all of which with $m n$ vertices ($m, n \in N, m >1 $). The numerical data gathered for $m <19$ reveal some matchings of
Externí odkaz:
http://arxiv.org/abs/2210.11527
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2023 Apr 01. 17(1), 120-137.
Externí odkaz:
https://www.jstor.org/stable/27281399
Autor:
Markovic, Maja D., Spasojevic, Pavle M., Pantic, Olga J., Savic, Sanja I., Spasojevic Savkovic, Milica M., Panic, Vesna V.
Publikováno v:
In Journal of Drug Delivery Science and Technology September 2024 98
Motivated to find the answers to some of the questions that have occurred in recent papers dealing with Hamiltonian cycles (abbreviated HCs) in some special classes of grid graphs we started the investigation of spanning unions of cycles, the so-call
Externí odkaz:
http://arxiv.org/abs/2109.12432
Publikováno v:
Applicable Analysis and Discrete Mathematics 16 (2022), 246-287
In this series of papers, the primary goal is to enumerate Hamiltonian cycles (HC's) on the grid cylinder graphs $P_{m+1}\times C_n$, where $n$ is allowed to grow whilst $m$ is fixed. In Part~I, we studied the so-called non-contractible HC's. Here, i
Externí odkaz:
http://arxiv.org/abs/2109.07875
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2022 Apr 01. 16(1), 246-287.
Externí odkaz:
https://www.jstor.org/stable/27174756
Autor:
DJOKIĆ, JELENA1 jelenadjokic@uns.ac.rs, BODROŽA-PANTIĆ, OLGA2 olga.bodroza-pantic@dmi.uns.ac.rs, DOROSLOVAČKI, KSENIJA1 ksenija@uns.ac.rs
Publikováno v:
Transactions on Combinatorics. Spring2024, Vol. 13 Issue 1, p41-66. 26p.
Autor:
Pantić, Bojana, Bodroža-Pantić, Olga
Publikováno v:
Ars Combinatoria, vol. 153 (2020) 261-270
This short note deals with the so-called $ Sock \; Matching \; Problem$. We define $B_{n,k}$ as the number of all the finite sequences $a_1, \ldots, a_{2n}$ of nonnegative integers which contain at least one occurrence of $k$ $(1 \leq k \leq n)$ and
Externí odkaz:
http://arxiv.org/abs/1609.08353