Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Panov, Taras E."'
Publikováno v:
Internat. Math. Research Notices 2010 (2010), 3207-3262
Our primary aim is to develop a theory of equivariant genera for stably complex manifolds equipped with compatible actions of a torus T^k. In the case of omnioriented quasitoric manifolds, we present computations that depend only on their defining co
Externí odkaz:
http://arxiv.org/abs/0908.3298
Publikováno v:
Moscow Math. Journal 7 (2007), no. 2, 219-242
Our aim is to bring the theory of analogous polytopes to bear on the study of quasitoric manifolds, in the context of stably complex manifolds with compatible torus action. By way of application, we give an explicit construction of a quasitoric repre
Externí odkaz:
http://arxiv.org/abs/math/0609346
Publikováno v:
Russian Math. Surveys 59 (2004), no. 3, 562-563
We prove that the integral cohomology algebra of the moment-angle complex Z_K, or of the corresponding coordinate subspace arrangement complement U(K), is isomorphic to the Tor-algebra of the face ring Z[K] of simplicial complex K.
Comment: 3 pa
Comment: 3 pa
Externí odkaz:
http://arxiv.org/abs/math/0407189
Autor:
Panov, Taras E.
We review a class of problems on the borders of topology of torus actions, commutative homological algebra and combinatorial geometry, which is currently being investigated by Victor Buchstaber and the author. The text builds on the lectures delivere
Externí odkaz:
http://arxiv.org/abs/math/0303164
Autor:
Buchstaber, Victor M., Panov, Taras E.
Publikováno v:
Russian Math. Surveys 55 (2000), no.5, 825-921
The paper surveys some new results and open problems connected with such fundamental combinatorial concepts as polytopes, simplicial complexes, cubical complexes, and subspace arrangements. Particular attention is paid to the case of simplicial and c
Externí odkaz:
http://arxiv.org/abs/math/0010073
Autor:
Buchstaber, Victor M., Panov, Taras E.
Let $\rho:(D^2)^m\to I^m$ be the orbit map for the diagonal action of the torus $T^m$ on the unit poly-disk $(D^2)^m$, $I^m=[0,1]^m$ is the unit cube. Let $C$ be a cubical subcomplex in $I^m$. The moment-angle complex $\ma(C)$ is a $T^m$-invariant bi
Externí odkaz:
http://arxiv.org/abs/math/0005199
Autor:
Buchstaber, Victor M., Panov, Taras E.
Publikováno v:
J. Math. Sci. (N. Y.) 113 (2003), no. 4, 558-568
We show that the cohomology algebra of the complement of a coordinate subspace arrangement in m-dimensional complex space is isomorphic to the cohomology algebra of Stanley-Reisner face ring of a certain simplicial complex on m vertices. (The face ri
Externí odkaz:
http://arxiv.org/abs/math/9912199
Autor:
Panov, Taras E.
Publikováno v:
Izv. Math. 65 (2001), no. 3, 543-556
A quasitoric manifold is a smooth 2n-manifold M^{2n} with an action of the compact torus T^n such that the action is locally isomorphic to the standard action of T^n on C^n and the orbit space is diffeomorphic, as manifold with corners, to a simple p
Externí odkaz:
http://arxiv.org/abs/math/9910083
Autor:
Buchstaber, Victor M., Panov, Taras E.
Publikováno v:
Proceedings of the Steklov Institute of Mathematics 225 (1999), 87-120
An n-dimensional polytope P^n is called simple if exactly n codimension-one faces meet at each vertex. The lattice of faces of a simple polytope P^n with m codimension-one faces defines an arrangement of even-dimensional planes in R^{2m}. We construc
Externí odkaz:
http://arxiv.org/abs/math/9909166
Autor:
Panov, Taras E.
Publikováno v:
Russian Acad. Sci. Izvestiya: Mathematics 62 (1998), no. 3, 515-548
We obtain general formulae expressing Hirzebruch genera of a manifold with Z/p-action in terms of invariants of this action (the sets of weights of fixed points). As an illustration, we consider numerous particular cases of well-known genera, in part
Externí odkaz:
http://arxiv.org/abs/math/9909081