Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Panjayan karthikeyan"'
Autor:
Ramasamy Arul, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Palanisamy Geetha, Ymnah Alruwaily, Lamya Almaghamsi, El-sayed El-hady
Publikováno v:
Fractal and Fractional, Vol 6, Iss 12, p 732 (2022)
We establish sufficient conditions for the existence of solutions of an integral boundary value problem for a Ψ-Hilfer fractional integro-differential equations with non-instantaneous impulsive conditions. The main results are proved with a suitable
Externí odkaz:
https://doaj.org/article/76aa5499e8714567ab846787b63f2be6
Autor:
Ramasamy Arul, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Ymnah Alruwaily, Lamya Almaghamsi, El-sayed El-hady
Publikováno v:
Fractal and Fractional, Vol 6, Iss 12, p 730 (2022)
We present the existence of solutions for sequential Caputo–Hadamard fractional differential equations (SC-HFDE) with fractional boundary conditions (FBCs). Known fixed-point techniques are used to analyze the existence of the problem. In particula
Externí odkaz:
https://doaj.org/article/842720ae098e4ea6b480539e31d3f043
Autor:
Ramasamy Arul, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Palanisamy Geetha, Ymnah Alruwaily, Lamya Almaghamsi, El-sayed El-hady
Publikováno v:
Symmetry, Vol 15, Iss 1, p 5 (2022)
We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Bana
Externí odkaz:
https://doaj.org/article/6353ca3ee82e46d3b8004246113eb298
Results on impulsive fractional integro-differential equations involving Atangana-Baleanu derivative
Publikováno v:
Filomat. 36:4617-4627
In this paper, we consider the impulsive fractional integro-differential equations involving Atangana-Baleanu fractional derivative. The main tools consist a fractional integral operator contains generalized Mittag-Leffler function, Gronwall-Bellman
Publikováno v:
Progress in Fractional Differentiation and Applications. 7:127-136