Zobrazeno 1 - 10
of 179
pro vyhledávání: '"Panin, I."'
Autor:
Panin, I., Stavrova, A.
Let D be a DVR of mixed characteristic. Let G be a reductive D-group scheme. Then the Grothendieck-Serre conjecture is true for the D-group scheme G and any geometrically regular local D-algebra R. Also we prove a version of Lindel-Ojanguren-Gabber's
Externí odkaz:
http://arxiv.org/abs/2412.11723
Global sensitivity analysis aims at quantifying respective effects of input random variables (or combinations thereof) onto variance of a physical or mathematical model response. Among the abundant literature on sensitivity measures, Sobol' indices h
Externí odkaz:
http://arxiv.org/abs/1705.03944
Publikováno v:
In Advances in Mathematics 4 June 2021 383
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Assume that R is a semi-local regular ring containing an infinite perfect field, or that R is a semi-local ring of several points on a smooth scheme over an infinite field. Let K be the field of fractions of R. Let H be a strongly inner adjoint simpl
Externí odkaz:
http://arxiv.org/abs/0905.1427
Autor:
Panin, I.
A proof of Grothendieck--Serre conjecture on principal bundles over a semi-local regular ring containing an infinite field is given in [FP] recently. That proof is based significantly on Theorem 1.0.1 stated below in the Introduction and proven in th
Externí odkaz:
http://arxiv.org/abs/0905.1423
Quillen's algebraic K-theory is reconstructed via Voevodsky's algebraic cobordism. More precisely, for a ground field k the algebraic cobordism P^1-spectrum MGL of Voevodsky is considered as a commutative P^1-ring spectrum. There is a unique ring mor
Externí odkaz:
http://arxiv.org/abs/0709.4124
An algebraic version of a theorem due to Quillen is proved. More precisely, for a ground field k we consider the motivic stable homotopy category SH(k) of P^1-spectra equipped with the symmetric monoidal structure described in arXiv:0709.3905v1 [math
Externí odkaz:
http://arxiv.org/abs/0709.4116
Under a certain normalization assumption we prove that the $\Pro^1$-spectrum $\mathrm{BGL}$ of Voevodsky which represents algebraic $K$-theory is unique over $\Spec(\mathbb{Z})$. Following an idea of Voevodsky, we equip the $\Pro^1$-spectrum $\mathrm
Externí odkaz:
http://arxiv.org/abs/0709.3905