Zobrazeno 1 - 10
of 146
pro vyhledávání: '"Panigrahi Pratima"'
Autor:
Das Arpita, Panigrahi Pratima
Publikováno v:
Discussiones Mathematicae - General Algebra and Applications, Vol 41, Iss 1, Pp 127-138 (2021)
In this paper we determine the normalized Laplacian spectrum of the Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of a connected regular graph with an arbitrary regular graph in terms of normalized Lapla
Externí odkaz:
https://doaj.org/article/2cdf1ed72f6c49afbad48fc1df3e166a
Autor:
Kumari, Komal, Panigrahi, Pratima
Very recently Ma and Wu \cite{wu2024generalization} obtained a generalization of Fielder's lemma and applied to find adjacency, Laplacian, and signless Laplacian spectra of $P_n-$ product of commuting graphs. In this paper, we give a generalization o
Externí odkaz:
http://arxiv.org/abs/2409.20105
Autor:
Kumari, Komal, Panigrahi, Pratima
The power graph $\mathscr{P}(G)$ of a group $G$ is defined as the simple graph with vertex set $G$, and where two distinct vertices $x$ and $y$ are joined by an edge if and only if either $x= y^k$ or $y= x^k$, $k \in \mathbb{N}$. Here we determine th
Externí odkaz:
http://arxiv.org/abs/2407.19771
Autor:
Das Arpita, Panigrahi Pratima
Publikováno v:
Discussiones Mathematicae - General Algebra and Applications, Vol 38, Iss 1, Pp 19-32 (2018)
The R-graph R(G) of a graph G is the graph obtained from G by intro- ducing a new vertex ue for each e ∈ E(G) and making ue adjacent to both the end vertices of e. In this paper, we determine the adjacency, Lapla- cian and signless Laplacian spectr
Externí odkaz:
https://doaj.org/article/bb3bdfb69b1c49b8b96d473d2ada3939
Autor:
Mandal Nibedita, Panigrahi Pratima
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 38, Iss 2, Pp 525-552 (2018)
An L(2, 1)-coloring (or labeling) of a simple connected graph G is a mapping f : V (G) → Z+ ∪ {0} such that |f(u)−f(v)| ≥ 2 for all edges uv of G, and |f(u) − f(v)| ≥ 1 if u and v are at distance two in G. The span of an L(2, 1)-coloring
Externí odkaz:
https://doaj.org/article/2086aec4be2c4be893cf873cf52333fa
Autor:
Mandal Nibedita, Panigrahi Pratima
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 2, Pp 279-297 (2016)
An L(2, 1)-coloring (or labeling) of a graph G is a vertex coloring f : V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G, and |f(u)−f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between vertices u and v in G. T
Externí odkaz:
https://doaj.org/article/d7ffc22b6721477b816b8e3806151195
Autor:
Kumari, Komal, Panigrahi, Pratima
The power graph $\mathscr{P}(G)$ of a group $G$ is an undirected graph with all the elements of $G$ as vertices and where any two vertices $u$ and $v$ are adjacent if and only if $u=v^m $ or $v=u^m$, $ m \in$ $\mathbb{Z}$. For a simple graph $H$ with
Externí odkaz:
http://arxiv.org/abs/2307.09129
Autor:
Kumar, Kush1 kushsingh029@gmail.com, Panigrahi, Pratima1 pratima@maths.iitkgp.ac.in
Publikováno v:
Communications in Combinatorics & Optimization. Mar2025, Vol. 10 Issue 1, p219-232. 14p.
Autor:
Howlader, Aditi, Panigrahi, Pratima
A $(k,g)$-cage is a $k$-regular simple graph of girth $g$ with minimum possible number of vertices. In this paper, $(k,g)$-cages which are Moore graphs are referred as minimal $(k,g)$-cages. A simple connected graph is called distance regular(DR) if
Externí odkaz:
http://arxiv.org/abs/2109.05274
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.