Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Paneri, Kaushal"'
Growing scale of recommender systems require extensive tuning to respond to market dynamics and system changes. We address the challenge of tuning a large-scale ads recommendation platform with multiple continuous parameters influencing key performan
Externí odkaz:
http://arxiv.org/abs/2410.03697
Autor:
Jia, Yimeng, Paneri, Kaushal, Huang, Rong, Maurya, Kailash Singh, Mallapragada, Pavan, Shi, Yifan
This paper introduces Adaptive Mixture Importance Sampling (AMIS) as a novel approach for optimizing key performance indicators (KPIs) in large-scale recommender systems, such as online ad auctions. Traditional importance sampling (IS) methods face c
Externí odkaz:
http://arxiv.org/abs/2409.13655
Autor:
Zucker, Jeremy, Paneri, Kaushal, Mohammad-Taheri, Sara, Bhargava, Somya, Kolambkar, Pallavi, Bakker, Craig, Teuton, Jeremy, Hoyt, Charles Tapley, Oxford, Kristie, Ness, Robert, Vitek, Olga
Counterfactual inference is a useful tool for comparing outcomes of interventions on complex systems. It requires us to represent the system in form of a structural causal model, complete with a causal diagram, probabilistic assumptions on exogenous
Externí odkaz:
http://arxiv.org/abs/2101.05136
This manuscript contributes a general and practical framework for casting a Markov process model of a system at equilibrium as a structural causal model, and carrying out counterfactual inference. Markov processes mathematically describe the mechanis
Externí odkaz:
http://arxiv.org/abs/1911.02175
Autor:
Sehgal, Gunjan, Gupta, Bindu, Paneri, Kaushal, Singh, Karamjit, Sharma, Geetika, Shroff, Gautam
As the world population increases and arable land decreases, it becomes vital to improve the productivity of the agricultural land available. Given the weather and soil properties, farmers need to take critical decisions such as which seed variety to
Externí odkaz:
http://arxiv.org/abs/1710.09077
Autor:
Singh, Karamjit, Paneri, Kaushal, Pandey, Aditeya, Gupta, Garima, Sharma, Geetika, Agarwal, Puneet, Shroff, Gautam
Publikováno v:
2016 19th International Conference on Information Fusion (FUSION); 2016, p987-994, 8p
Autor:
Sharma, Geetika, Shroff, Gautam, Pandey, Aditeya, Singh, Brijendra, Sehgal, Gunjan, Paneri, Kaushal, Agarwal, Puneet
Publikováno v:
2015 IEEE International Conference on Data Mining Workshop (ICDMW); 1/1/2015, p668-674, 7p
Publikováno v:
2016 19th International Conference on Information Fusion (FUSION); 2016, p2324-2337, 14p
Publikováno v:
2015 IEEE International Conference on Data Mining Workshop (ICDMW); 1/1/2015, p1713-1721, 9p