Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Panagiotis S. Vigklas"'
Given the polynomials f, g ∈ Z[x] the main result of our paper,Theorem 1, establishes a direct one-to-one correspondence between the modified Euclidean and Euclidean polynomial remainder sequences (prs’s) of f, gcomputed in Q[x], on one hand, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68b4218eeb4a30d72e8b3656501760fc
https://hdl.handle.net/10525/2913
https://hdl.handle.net/10525/2913
In this paper we present two new methods for computing the subresultant polynomial remainder sequence (prs) of two polynomials f, g ∈ Z[x]. We are now able to also correctly compute the Euclidean and modified Euclidean prs of f, g by using either o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d0ba75630ce88bcd72d66373e1f530b
https://hdl.handle.net/10525/2924
https://hdl.handle.net/10525/2924
Publikováno v:
Nonlinear Analysis, Vol 13, Iss 3 (2008)
In this paper we compare four implementations of the Vincent-AkritasStrzebo´nski Continued Fractions (VAS-CF) real root isolation method using four different (two linear and two quadratic complexity) bounds on the values of the positive roots of pol
Publikováno v:
Nonlinear Analysis, Vol 11, Iss 2 (2006)
Given an m × n matrix A, with m ≥ n, the four subspaces associated with it are shown in Fig. 1 (see [1]). Fig. 1. The row spaces and the nullspaces of A and AT; a1 through an and h1 through hm are abbreviations of the alignerframe and hangerframe
Publikováno v:
The Mathematica Journal. 11
Motivated by the excellent work of Bill Davis and Jerry Uhl’s Differential Equations & Mathematica [1], we present in detail several little-known applications of the fast discrete Fourier transform (DFT), also known as FFT. Namely, we first examine
Publikováno v:
Symbolic Computation and Education
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c389f22bedc7f9db259c672d3a03ef62
https://doi.org/10.1142/9789812776006_0014
https://doi.org/10.1142/9789812776006_0014