Zobrazeno 1 - 10
of 244
pro vyhledávání: '"Pan Shun"'
Autor:
Wang, Yin-Zhu, Li, Yue-Rong, Zhang, Yu-Qi, Xiang, Yuan-Meng, Bai, Rong-Rui, Liu, Yan, Li, Meng-Li, Meng, Gong-Rui, Pan, Shun-Long, Zhang, Fang, Mi, Li, Hu, Yong-Hong
Publikováno v:
In Biosensors and Bioelectronics 1 October 2024 261
Publikováno v:
In Urban Climate July 2024 56
This work addresses weakly-supervised image semantic segmentation based on image-level class labels. One common approach to this task is to propagate the activation scores of Class Activation Maps (CAMs) using a random-walk mechanism in order to arri
Externí odkaz:
http://arxiv.org/abs/2103.16762
For a given set of $n\times n$ matrices $\mathcal F$, we study the union of the $C$-numerical ranges of the matrices in the set $\mathcal F$, denoted by $W_C({\mathcal F})$. We obtain basic algebraic and topological properties of $W_C({\mathcal F})$,
Externí odkaz:
http://arxiv.org/abs/1805.00602
Let ${\bf A} = (A_1, \dots, A_m)$ be an $m$-tuple of bounded linear operators acting on a Hilbert space ${\cal H}$. Their joint $(p,q)$-matricial range $\Lambda_{p,q}({\bf A})$ is the collection of $(B_1, \dots, B_m) \in {\bf M}_q^m$, where $I_p\otim
Externí odkaz:
http://arxiv.org/abs/1710.09555
Publikováno v:
In Ceramics International 1 October 2021 47(19):27639-27649
Let $A\in \mathbb{R}^{N\times N}$ and $\mathrm{SO}_n:=\{ U \in \mathbb{R}^{N \times N}:UU^t=I_n,\det U>0\}$ be the set of $n\times n$ special orthogonal matrices. Define the (real) special orthogonal orbit of $A$ by \[ O(A):=\{UAV:U,V\in\mathrm{SO}_n
Externí odkaz:
http://arxiv.org/abs/1608.06101
Let $\mathcal{H}_n$ be the set of all $n\times n$ Hermitian matrices and $\mathcal{H}^m_n$ be the set of all $m$-tuples of $n\times n$ Hermitian matrices. For $A=(A_1,...,A_m)\in \mathcal{H}^m_n$ and for any linear map $L:\mathcal{H}^m_n\to\mathbb{R}
Externí odkaz:
http://arxiv.org/abs/1608.06094
Publikováno v:
In Flow Measurement and Instrumentation August 2021 80
Publikováno v:
In Linear Algebra and Its Applications 15 November 2020 605:249-262