Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Pan, Zhishi"'
Publikováno v:
In Discrete Applied Mathematics 15 December 2024 358:468-476
Let $G(V,E)$ be a simple graph with $m$ edges. For a given integer $k$, a $k$-shifted antimagic labeling is a bijection $f: E(G) \to \{k+1, k+2, \ldots, k+m\}$ such that all vertices have different vertex-sums, where the vertex-sum of a vertex $v$ is
Externí odkaz:
http://arxiv.org/abs/2112.13582
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The concept of antimagic labelings of a graph is to produce distinct vertex sums by labeling edges through consecutive numbers starting from one. A long-standing conjecture is that every connected graph, except a single edge, is antimagic. Some graph
Externí odkaz:
http://arxiv.org/abs/1806.06019
Publikováno v:
In Discrete Applied Mathematics 31 May 2022 313:135-146
A graph $G=(V,E)$ is strongly antimagic, if there is a bijective mapping $f: E \to \{1,2,\ldots,|E|\}$ such that for any two vertices $u\neq v$, not only $\sum_{e \in E(u)}f(e) \ne \sum_{e\in E(v)}f(e)$ and also $\sum_{e \in E(u)}f(e) < \sum_{e\in E(
Externí odkaz:
http://arxiv.org/abs/1712.09477
Autor:
Pan, Zhishi, Zhu, Xuding
Publikováno v:
In Discrete Mathematics March 2022 345(3)
A graph $G=(V,E)$ is antimagic if there is a one-to-one correspondence $f: E \to \{1,2,\ldots, |E|\}$ such that for any two vertices $u,v$, $\sum_{e \in E(u)}f(e) \ne \sum_{e\in E(v)}f(e)$. It is known that bipartite regular graphs are antimagic and
Externí odkaz:
http://arxiv.org/abs/1505.07688
Publikováno v:
In Discrete Mathematics 2009 309(21):6153-6159
Autor:
Pan, Zhishi, Zhu, Xuding
Publikováno v:
In European Journal of Combinatorics 2008 29(4):1055-1063