Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Pallavi Baljekar"'
Autor:
Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Allahsera Tapo, Nishant Subramani, Artem Sokolov, Claytone Sikasote, Monang Setyawan, Supheakmungkol Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, Annette Rios, Isabel Papadimitriou, Salomey Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, Andre Niyongabo Rubungo, Toan Q. Nguyen, Mathias Müller, André Müller, Shamsuddeen Hassan Muhammad, Nanda Muhammad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapiwanashe Matangira, Colin Leong, Nze Lawson, Sneha Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure F. P. Dossou, Sakhile Dlamini, Nisansa de Silva, Sakine Çabuk Ballı, Stella Biderman, Alessia Battisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime, Ayodele Awokoya, Duygu Ataman, Orevaoghene Ahia, Oghenefego Ahia, Sweta Agrawal, Mofetoluwa Adeyemi
Publikováno v:
Transactions of the Association for Computational Linguistics, Vol 10 (2023)
Externí odkaz:
https://doaj.org/article/183709a1b69d42379e0bf5e2c5ba1497
Autor:
Hansa Srinivasan, James Atwood, Alexander D'Amour, Yoni Halpern, D. Sculley, Pallavi Baljekar
Publikováno v:
FAT*
As machine learning becomes increasingly incorporated within high impact decision ecosystems, there is a growing need to understand the long-term behaviors of deployed ML-based decision systems and their potential consequences. Most approaches to und
Autor:
Weimin Wang, Roman A. Solovyev, Igor Ivanov, Pavel Ostyakov, Sergey I. Nikolenko, D. Sculley, Yoni Halpern, Pallavi Baljekar, Miha Skalic, James Atwood, Eric Breck
Publikováno v:
The NeurIPS '18 Competition ISBN: 9783030291341
Popular large image classification datasets that are drawn from the web present Eurocentric and Americentric biases that negatively impact the generalizability of models trained on them Shreya Shankar et al. (No classification without representation:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f99bb5317ce25a9bb78aaff036005ef
https://doi.org/10.1007/978-3-030-29135-8_6
https://doi.org/10.1007/978-3-030-29135-8_6
Publikováno v:
INTERSPEECH
Publikováno v:
ASRU
The paper describes Carnegie Mellon University's (CMU) entry to the ES-1 sub-task of the Blizzard Machine Learning Speech Synthesis Challenge 2017. The submitted system is a parametric model trained to predict vocoder parameters given linguistic feat
Autor:
Pallavi Baljekar, Alan W. Black
Publikováno v:
SSW
Publikováno v:
INTERSPEECH
Publikováno v:
SLT
In this paper we introduce a simplified architecture for gated recurrent neural networks that can be used in single-pass applications, where word-spotting needs to be done in real-time and phoneme-level information is not available for training. The
Autor:
Pallavi Baljekar, Hemant A. Patil
Publikováno v:
2012 International Conference on Signal Processing and Communications (SPCOM).
In this paper, a new feature-set, viz., Teager Energy Operator (TEO) phase has been proposed for automatic classification of normal vs. pathological voices. Development of TEO phase has been motivated from recently proposed linear prediction (LP) res
Autor:
Hemant A. Patil, Pallavi Baljekar
Publikováno v:
ICASSP
In this paper, an attempt is made to compare and analyze the various waveform fractal dimension techniques for voice pathology classification. Three methods of estimating the fractal dimension directly from the time-domain waveform have been compared