Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Pal, Sarbeswar"'
Autor:
Pal, Sarbeswar
Let $X$ be a projective Fano manifold of Picard number one, different from the projective space. There is a folklore conjecture that any non-constant endomorphism of $X$ is an isomorphism. In the first half of this article, we will prove the folklore
Externí odkaz:
http://arxiv.org/abs/2303.03665
Autor:
Pal, Sarbeswar
Publikováno v:
In Journal of Algebra 1 December 2024 659:451-474
Autor:
Pal, Sarbeswar
Let $C$ be smooth irreducible projective curve of genus $g \ge 2$. Let $\mathcal{M}_C(n, \delta)$ be moduli space of stable vector bundles on $C$ of rank $n$ and fixed determinant $\delta$ of degree $d$. Then the locus of wobbly bundles are known to
Externí odkaz:
http://arxiv.org/abs/2202.11874
Autor:
Basu, Suratno, Pal, Sarbeswar
Let $X$ be a smooth projective algebraic surface of Picard rank one with very ample canonical bundle $K_X$. We further assume that $q -1 \le \chi(\mathcal{O}_X$. In this article, we will study the existence of the Ulrich bundle and its stability prop
Externí odkaz:
http://arxiv.org/abs/2201.12734
Autor:
Basu, Suratno, Pal, Sarbeswar
Let $(X, H)$ be a polarized smooth projective algebraic surface and $E$ is globally generated, stable vector bundle on $X$. Then the Syzygy bundle $M_E$ associated to it is defined as the kernel bundle corresponding to the evaluation map. In this art
Externí odkaz:
http://arxiv.org/abs/2105.05433
Autor:
Basu, Suratno, Pal, Sarbeswar
Publikováno v:
In Journal of Algebra 15 February 2024 640:59-73
Autor:
Pal, Sarbeswar
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica, 2022
Let $X$ be a smooth projective K3 surface over complex numbers and $C$ be an ample curve on $X$. In this paper we will study the semistability of the Lazarsfeld-Mukai bundle $E_{C, A}$ associated to a line bundle $A$ ion $C$ such that $|A|$ is a penc
Externí odkaz:
http://arxiv.org/abs/2005.09208
Autor:
Pal, Sarbeswar
Let $S$ be a very general smooth hypersurface of degree $6$ in $\mathbb{P}^3$. In this paper we will prove that the moduli space of $\mu$-stable rank $2$ torsion free sheaves with respect to hyperplane section having $c_1 = \mathcal{O}_S(1)$, with fi
Externí odkaz:
http://arxiv.org/abs/2003.07036
Let $S \subset \mathbb P^3$ be a very general sextic surface over complex numbers. Let $\mathcal{M}(H, c_2)$ be the moduli space of rank $2$ stable bundles on $S$ with fixed first Chern class $H$ and second Chern class $c_2$. In this article we study
Externí odkaz:
http://arxiv.org/abs/2003.06146
Autor:
Basu, Suratno, Pal, Sarbeswar
Publikováno v:
In Bulletin des sciences mathématiques December 2023 189