Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Paillassa, Maxime"'
Autor:
Mendoza, Ismael, Torchylo, Andrii, Sainrat, Thomas, Guinot, Axel, Boucaud, Alexandre, Paillassa, Maxime, Avestruz, Camille, Adari, Prakruth, Aubourg, Eric, Biswas, Biswajit, Buchanan, James, Burchat, Patricia, Doux, Cyrille, Joseph, Remy, Kamath, Sowmya, Malz, Alex I., Merz, Grant, Miyatake, Hironao, Roucelle, Cécile, Zhang, Tianqing, Collaboration, the LSST Dark Energy Science
We present an open source Python library for simulating overlapping (i.e., blended) images of galaxies and performing self-consistent comparisons of detection and deblending algorithms based on a suite of metrics. The package, named Blending Toolkit
Externí odkaz:
http://arxiv.org/abs/2409.06986
Publikováno v:
A&A 634, A48 (2020)
In this work, we propose two convolutional neural network classifiers for detecting contaminants in astronomical images. Once trained, our classifiers are able to identify various contaminants, such as cosmic rays, hot and bad pixels, persistence eff
Externí odkaz:
http://arxiv.org/abs/1907.08298
Autor:
Paillassa, Maxime, 訳西澤淳
Publikováno v:
Astronomical Herald; Aug2022, Vol. 115 Issue 8, p499-506, 8p
Autor:
Paillassa, Maxime
Publikováno v:
Astrophysics [astro-ph]. Université de Bordeaux, 2020. English. ⟨NNT : 2020BORD0147⟩
Extracting reliable source catalogs from images is crucial for a broad range of astronomical research topics.However, the efficiency of current source detection methods becomes severely limited in crowded fields, or when images are contaminated by op
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6a5915e08933c3f0680dd7935558575e
https://tel.archives-ouvertes.fr/tel-03161521/file/PAILLASSA_MAXIME_2020.pdf
https://tel.archives-ouvertes.fr/tel-03161521/file/PAILLASSA_MAXIME_2020.pdf
Publikováno v:
Astronomical Data Analysis Software and Systems XXVIII. ASP Conference Series, Vol. 521, proceedings of a conference held (11-15 October 2018) at The Hotel at the University of Maryland, College Park, Maryland, USA. Edited by Peter J. Teuben, Marc W. Pound, Brian A. Thomas, and Elizabeth M.Warner. San Francisco: Astronomical Society of the Pacific, 2019, p.99
Astronomical Data Analysis Software and Systems XXVIII. ASP Conference Series, Vol. 521, proceedings of a conference held (11-15 October 2018) at The Hotel at the University of Maryland, College Park, Maryland, USA. Edited by Peter J. Teuben, Marc W. Pound, Brian A. Thomas, and Elizabeth M.Warner. San Francisco: Astronomical Society of the Pacific, 2019, p.99, Oct 2018, Maryland, United States
Astronomical Data Analysis Software and Systems XXVIII. ASP Conference Series, Vol. 521, proceedings of a conference held (11-15 October 2018) at The Hotel at the University of Maryland, College Park, Maryland, USA. Edited by Peter J. Teuben, Marc W. Pound, Brian A. Thomas, and Elizabeth M.Warner. San Francisco: Astronomical Society of the Pacific, 2019, p.99, Oct 2018, Maryland, United States
International audience; We present MaxiMask, a contaminant detector for ground-based astronomical images based on convolutional neural networks (CNNs). Once trained, Maxi-Mask is able to detect cosmic rays, hot pixels, bad pixels, saturated pixels, d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::678d744b589d8cfd613e6c562976ed9f
http://hdl.handle.net/20.500.12278/95320
http://hdl.handle.net/20.500.12278/95320
Autor:
Paillassa, Maxime, Bertin, Emmanuel
Publikováno v:
ASP Conference Series; 2019, Vol. 521, p382-385, 4p
Autor:
Paillassa, Maxime
Publikováno v:
Astrophysics [astro-ph]. Université de Bordeaux, 2020. English. ⟨NNT : 2020BORD0147⟩
Extracting reliable source catalogs from images is crucial for a broad range of astronomical research topics.However, the efficiency of current source detection methods becomes severely limited in crowded fields, or when images are contaminated by op
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::518fb52b71f23dc188f74334b1ec3cc9
http://hdl.handle.net/20.500.12278/95057
http://hdl.handle.net/20.500.12278/95057