Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Page, Emile"'
The purpose of this article is to show that Theorems 2.2-2.5 from [1] apply to the product of random matrices considered by Grama, Le Page, and Peign\'e [2]. This allows us, in particular, to emphasize the general nature of the formulation of our the
Externí odkaz:
http://arxiv.org/abs/2410.05795
Let $(Z_n)_{n\geqslant 0}$ be a branching process in a random environment defined by a Markov chain $(X_n)_{n\geqslant 0}$ with values in a finite state space $\mathbb X$ starting at $X_0=i \in\mathbb X$. We extend from the i.i.d. environment to the
Externí odkaz:
http://arxiv.org/abs/1708.00233
Let $(X_n)_{n\geq 0}$ be a Markov chain with values in a finite state space $\mathbb X$ starting at $X_0=x \in \mathbb X$ and let $f$ be a real function defined on $\mathbb X$. Set $S_n=\sum_{k=1}^{n} f(X_k)$, $n\geqslant 1$. For any $y \in \mathbb R
Externí odkaz:
http://arxiv.org/abs/1707.06129
Consider a Markov chain $(X_n)_{n\geqslant 0}$ with values in the state space $\mathbb X$. Let $f$ be a real function on $\mathbb X$ and set $S_0=0,$ $S_n = f(X_1)+\cdots + f(X_n),$ $n\geqslant 1$. Let $\mathbb P_x$ be the probability measure generat
Externí odkaz:
http://arxiv.org/abs/1607.07757
Autor:
Guivarc'H, Yves, Page, Emile Le
We consider a general multivariate affine stochastic recursion and the associated Markov chain on $\mathbb R^{d}$. We assume a natural geometric condition which implies existence of an unbounded stationary solution and we show that the large values o
Externí odkaz:
http://arxiv.org/abs/1604.08118
Consider the real Markov walk $S_n = X_1+ \dots+ X_n$ with increments $\left(X_n\right)_{n\geq 1}$ defined by a stochastic recursion starting at $X_0=x$. For a starting point $y>0$ denote by $\tau_y$ the exit time of the process $\left( y+S_n \right)
Externí odkaz:
http://arxiv.org/abs/1601.02991
Consider the product $G_{n}=g_{n} ... g_{1}$ of the random matrices $g_{1},...,g_{n}$ in $GL(d,\mathbb{R}) $ and the random process $ G_{n}v=g_{n}... g_{1}v$ in $\mathbb{R}^{d}$ starting at point $v\in \mathbb{R}^{d}\smallsetminus \{0\} .$ It is well
Externí odkaz:
http://arxiv.org/abs/1411.0423
Publikováno v:
In Stochastic Processes and their Applications July 2019 129(7):2485-2527
Autor:
Guivarc'H, Yves, Page, Emile Le
Let $V=\mathbb R^d$ be the Euclidean $d$-dimensional space, $\mu$ (resp $\lambda$) a probability measure on the linear (resp affine) group $G=G L (V)$ (resp $H= \Aff (V))$ and assume that $\mu$ is the projection of $\lambda$ on $G$. We study asymptot
Externí odkaz:
http://arxiv.org/abs/1204.6004
We consider a general multidimensional affine recursion with corresponding Markov operator $P$ and a unique $P$-stationary measure. We show spectral gap properties on H\"older spaces for the corresponding Fourier operators and we deduce convergence t
Externí odkaz:
http://arxiv.org/abs/1108.3146