Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Pagani, Nicola"'
We introduce and study a new class of compactified Jacobians for nodal curves, that we call compactified Jacobians of vine type, or simply V-compactified Jacobians. This class is strictly larger than the class of classical compactified Jacobians, as
Externí odkaz:
http://arxiv.org/abs/2412.03532
Autor:
Pagani, Nicola, Tommasi, Orsola
Publikováno v:
Forum of Mathematics, Sigma 12 (2024) e87
We introduce the abstract notion of a \emph{smoothable fine compactified Jacobian} of a nodal curve, and of a family of nodal curves whose general element is smooth. Then we introduce the notion of a combinatorial stability condition for line bundles
Externí odkaz:
http://arxiv.org/abs/2309.08509
Autor:
Abreu, Alex, Pagani, Nicola
We give an explicit graph formula, in terms of decorated boundary strata classes, for the wall-crossing of universal Brill-Noether classes. More precisely, fix $n>0$ and $d
Externí odkaz:
http://arxiv.org/abs/2303.16836
Autor:
Pagani, Nicola, Tommasi, Orsola
We introduce a general abstract notion of fine compactified Jacobian for nodal curves of arbitrary genus. We focus on genus 1 and prove combinatorial classification results for fine compactified Jacobians in the case of a single nodal curve and in th
Externí odkaz:
http://arxiv.org/abs/2012.09142
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Math. Nachr. 293 (2020), no. 11, 2187-2207
Following Mumford and Chiodo, we compute the Chern character of the derived pushforward $\textrm{ch} (R^\bullet\pi_\ast\mathscr{O}(\mathsf{D}))$, for $\mathsf D$ an arbitrary element of the Picard group of the universal curve over the moduli stack of
Externí odkaz:
http://arxiv.org/abs/1809.10668
We prove that the extension of the double ramification cycle defined by the first-named author (using modifications of the stack of stable curves) coincides with that defined by the last-two named authors (using an extended Brill-Noether locus on sui
Externí odkaz:
http://arxiv.org/abs/1712.07098
Autor:
Kass, Jesse Leo, Pagani, Nicola
Publikováno v:
Trans. Amer. Math. Soc. 372 (2019), 4851-4887
In this paper we describe compactified universal Jacobians, i.e. compactifications of the moduli space of line bundles on smooth curves obtained as moduli spaces of rank 1 torsion-free sheaves on stable curves, using an approach due to Oda-Seshadri.
Externí odkaz:
http://arxiv.org/abs/1707.02284
Autor:
Kass, Jesse Leo, Pagani, Nicola
Publikováno v:
Advances in Mathematics 321C (2017) pp. 221-268
The Jacobian varieties of smooth curves fit together to form a family, the universal Jacobian, over the moduli space of smooth marked curves, and the theta divisors of these curves form a divisor in the universal Jacobian. In this paper we describe h
Externí odkaz:
http://arxiv.org/abs/1507.03564
Autor:
Pagani, Nicola
For any finite abelian group G, we study the moduli space of abelian $G$-covers of elliptic curves, in particular identifying the irreducible components of the moduli space. We prove that, in the totally ramified case, the moduli space has trivial ra
Externí odkaz:
http://arxiv.org/abs/1303.2991