Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Padmavathi Srinivasan"'
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 7 (2023)
Let l be a prime and G a pro-l group with torsion-free abelianization. We produce group-theoretic analogues of the Johnson/Morita cocycle for G -- in the case of surface groups, these cocycles appear to refine existing constructions when l=2. We appl
Externí odkaz:
https://doaj.org/article/745ccc0a4bad4648b27e0d0c2fea1a5b
Publikováno v:
Transactions of the American Mathematical Society. 374:3427-3451
We enrich the classical count that there are two complex lines meeting four lines in space to an equality of isomorphism classes of bilinear forms. For any field $k$, this enrichment counts the number of lines meeting four lines defined over $k$ in $
Autor:
Padmavathi Srinivasan
Publikováno v:
Israel Journal of Mathematics. 234:769-776
A field $K$ is called ample if for every geometrically integral $K$-variety $V$ with a smooth $K$-point, $V(K)$ is Zariski-dense in $V$. A field $K$ is virtually ample if some finite extension of $K$ is ample. We prove that there exists a virtually a
Autor:
Andrew Obus, Padmavathi Srinivasan
Let $K$ be a discretely valued field with ring of integers $\mathcal{O}_K$ with perfect residue field. Let $K(x)$ be the rational function field in one variable. Let $\mathbb{P}^1_{\mathcal{O}_K}$ be the standard smooth model of $\mathbb{P}^1_K$ with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8517becf8eec8d83f6b7f07c2cda3e98
We formulate a tropical analogue of Grothendieck's section conjecture: that for every stable graph G of genus g>2, and every field k, the generic curve with reduction type G over k satisfies the section conjecture. We prove many cases of this conject
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::267be965f38b1ffab83efc48bab36162
http://arxiv.org/abs/2010.07331
http://arxiv.org/abs/2010.07331
Publikováno v:
Notices of the American Mathematical Society. 68:1
Publikováno v:
Notices of the American Mathematical Society. 66:239
Autor:
Beth Malmskog, Renate Scheidler, Irene I. Bouw, Wei Ho, Padmavathi Srinivasan, Christelle Vincent
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783319309743
This paper describes a class of Artin–Schreier curves, generalizing results of Van der Geer and Van der Vlugt to odd characteristic. The automorphism group of these curves contains a large extraspecial group as a subgroup. Precise knowledge of this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::601e54d91c0b102875e33118a389fe3c
https://doi.org/10.1007/978-3-319-30976-7_4
https://doi.org/10.1007/978-3-319-30976-7_4