Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Padinhatteeri, Sajith"'
In this paper, we study the computational complexity of \textsc{$s$-Club Cluster Vertex Deletion}. Given a graph, \textsc{$s$-Club Cluster Vertex Deletion ($s$-CVD)} aims to delete the minimum number of vertices from the graph so that each connected
Externí odkaz:
http://arxiv.org/abs/2210.07699
Publikováno v:
In Discrete Applied Mathematics 15 March 2024 345:170-189
Publikováno v:
In Discrete Applied Mathematics 31 March 2023 328:97-107
For a graph $G$ and a positive integer $k$, a vertex labelling $f:V(G)\to\{1,2\ldots,k\}$ is said to be $k$-distinguishing if no non-trivial automorphism of $G$ preserves the sets $f^{-1}(i)$ for each $i\in\{1,\ldots,k\}$. The distinguishing chromati
Externí odkaz:
http://arxiv.org/abs/1705.10465
A graph $G$ is said to be $k$-distinguishable if the vertex set can be colored using $k$ colors such that no non-trivial automorphism fixes every color class, and the distinguishing number $D(G)$ is the least integer $k$ for which $G$ is $k$-distingu
Externí odkaz:
http://arxiv.org/abs/1602.03741
The \textit{Distinguishing Chromatic Number} of a graph $G$, denoted $\chi_D(G)$, was first defined in \cite{collins} as the minimum number of colors needed to properly color $G$ such that no non-trivial automorphism $\phi$ of the graph $G$ fixes eac
Externí odkaz:
http://arxiv.org/abs/1505.03396
The \textit{Distinguishing Chromatic Number} of a graph $G$, denoted $\chi_D(G)$, was first defined in \cite{collins} as the minimum number of colors needed to properly color $G$ such that no non-trivial automorphism $\phi$ of the graph $G$ fixes eac
Externí odkaz:
http://arxiv.org/abs/1406.5358
Publikováno v:
In Discrete Applied Mathematics 19 February 2018 236:30-41
Publikováno v:
In Discrete Mathematics October 2017 340(10):2447-2455
Publikováno v:
Ars mathematica contemporanea
For a graph ?$G$? and a positive integer ?$k$?, a vertex labelling ?$f: V(G) \rightarrow \{1, 2, \dots, k\}$? is said to be ?$k$?-distinguishing if no non-trivial automorphism of ?$G$? preserves the sets ?$f^{-1}(i)$? for each ?$i \in \{1, \dots, k\}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3825::5a9778280e13e5724d33dd5d202e2bb9
http://www.dlib.si/details/URN:NBN:SI:doc-TNBZMBHJ
http://www.dlib.si/details/URN:NBN:SI:doc-TNBZMBHJ