Zobrazeno 1 - 10
of 202
pro vyhledávání: '"Pacifico, M J"'
Autor:
Pacifico, M. J., Vieitez, J.
Publikováno v:
Proceedings of the Edinburgh Mathematical Society 63 (2020) 413-425
Let (M,d) be a compact metric space and f:M --> M an expansive homeomorphism. We define Lyapunov exponents L(f,m)_{max} and l(f,mu)_{min} for an f-invariant measure m. When L(f,m)_{max} > 0 and l(f,mu)_{min} < 0 can be interpreted as a weak form of h
Externí odkaz:
http://arxiv.org/abs/1704.05284
Let $f: [0,1]\times [0,1] \setminus {1/2} \to [0,1]\times [0,1]$ be the $C^\infty$ endomorphism given by $$f(x,y)=(2x- [2x], y+ c/|x-1/2|- [y+ c/|x-1/2|]),$$ where $c$ is a positive real number. We prove that $f$ is topologically mixing and if $c>1/4
Externí odkaz:
http://arxiv.org/abs/1202.2162
Publikováno v:
J. Differential Equations 251 (2011) 3163-3201
We present a multidimensional flow exhibiting a Rovella-like attractor: a transitive invariant set with a non-Lorenz-like singularity accumulated by regular orbits and a multidimensional non-uniformly expanding invariant direction. Moreover, this att
Externí odkaz:
http://arxiv.org/abs/0909.1033
Since the seminal work of Sinai one studies chaotic properties of planar billiards tables. Among them is the study of decay of correlations for these tables. There are examples in the literature of tables with exponential and even polynomial decay. H
Externí odkaz:
http://arxiv.org/abs/0907.0975
Autor:
Pacifico, M. J., Vieitez, J. L.
Let $f: M \to M$ be a $C^r$-diffeomorphism, $r\geq 1$, defined on a compact boundaryless $d$-dimensional manifold $M$, $d\geq 2$, and let $H(p)$ be the homoclinic class associated to the hyperbolic periodic point $p$. We prove that if there exists a
Externí odkaz:
http://arxiv.org/abs/0903.2948
Autor:
Galatolo, S., Pacifico, M. J.
In this paper we prove that the Poincar\'e map associated to a Lorenz like flow has exponential decay of correlations with respect to Lipschitz observables. This implies that the hitting time associated to the flow satisfies a logarithm law. The hitt
Externí odkaz:
http://arxiv.org/abs/0901.0574
Autor:
Araujo, V, Pacifico, M J
Publikováno v:
Journal of Statistical Physics, v. 125, p. 415-457, 2007
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hyperbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average w
Externí odkaz:
http://arxiv.org/abs/math/0601449
Publikováno v:
Dynamical Systems, Volume 22, Issue 3, 2007, pages 249 - 267
An attractor $\Lambda$ for a 3-vector field $X$ is singular-hyperbolic if all its singularities are hyperbolic and it is partially hyperbolic with volume expanding central direction. We prove that $C^{1+\alpha}$ singular-hyperbolic attractors, for so
Externí odkaz:
http://arxiv.org/abs/math/0509306
Autor:
Morales, C. A., Pacifico, M. J.
A {\em singular hyperbolic set} is a partially hyperbolic set with singularities (all hyperbolic) and volume expanding central direction \cite{MPP1}. We study connected, singular-hyperbolic, attracting sets with dense closed orbits {\em and only one
Externí odkaz:
http://arxiv.org/abs/math/0303309
Autor:
Morales, C. A., Pacifico, M. J.
A recent problem in dynamics is to determinate whether an attractor $\Lambda$ of a $C^r$ flow $X$ is $C^r$ robust transitive or not. By {\em attractor} we mean a transitive set to which all positive orbits close to it converge. An attractor is $C^r$
Externí odkaz:
http://arxiv.org/abs/math/0303310