Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Pacienza, Gianluca"'
We study the relative cone conjecture for families of $K$-trivial varieties with vanishing irregularity. As an application we prove that the relative movable and the relative nef cone conjectures hold for fibrations in projective IHS manifolds of the
Externí odkaz:
http://arxiv.org/abs/2410.11987
Autor:
Mongardi, Giovanni, Pacienza, Gianluca
Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization, to prove existence results for rational curves on projective $K3$ surfaces. We show that, for projective irreducible holomorphic symple
Externí odkaz:
http://arxiv.org/abs/2310.18248
Autor:
Pacienza, Gianluca, Sarti, Alessandra
Enriques manifolds are non simply connected manifolds whose universal cover is irreducible holomorphic symplectic, and as such they are natural generalizations of Enriques surfaces. The goal of this note is to prove the Morrison-Kawamata cone conject
Externí odkaz:
http://arxiv.org/abs/2303.07095
In this note, we extend to the singular case some results on the birational geometry of irreducible holomorphic symplectic manifolds.
Comment: Final version. To appear in "Perspectives on four decades. Algebraic Geometry 1980 - 2020. In memory o
Comment: Final version. To appear in "Perspectives on four decades. Algebraic Geometry 1980 - 2020. In memory o
Externí odkaz:
http://arxiv.org/abs/2210.12451
We prove the Morrison--Kawamata cone conjecture for projective primitive symplectic varieties with $\Q$-factorial and terminal singularities with $b_2\geq 5$, from which we derive for instance the finiteness of minimal models of such varieties, up to
Externí odkaz:
http://arxiv.org/abs/2207.14754
We study the deformation theory of rational curves on primitive symplectic varieties and show that if the rational curves cover a divisor, then, as in the smooth case, they deform along their Hodge locus in the universal locally trivial deformation.
Externí odkaz:
http://arxiv.org/abs/2103.16356
Zariski decomposition plays an important role in the theory of algebraic surfaces due to many applications. For irreducible symplectic manifolds Boucksom provided a characterization of his divisorial Zariski decomposition in terms of the Beauville-Bo
Externí odkaz:
http://arxiv.org/abs/1911.03367
We study families of rational curves on irreducible holomorphic symplectic varieties. We give a necessary and sufficient condition for a sufficiently ample linear system on a holomorphic symplectic variety of $K3^{[n]}$-type to contain a uniruled div
Externí odkaz:
http://arxiv.org/abs/1907.10970
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mongardi, Giovanni, Pacienza, Gianluca
In this note we derive from deep results due to Clozel-Ullmo the density of Noether-Lefschetz loci inside the moduli space of marked (polarized) irreducible holomorphic symplectic (IHS) varieties. In particular we obtain the density of Hilbert scheme
Externí odkaz:
http://arxiv.org/abs/1804.09440