Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Pachetti, Eva"'
Background and objective: Employing deep learning models in critical domains such as medical imaging poses challenges associated with the limited availability of training data. We present a strategy for improving the performance and generalization ca
Externí odkaz:
http://arxiv.org/abs/2403.17530
Autor:
Xue, Yuyang, Du, Yuning, Carloni, Gianluca, Pachetti, Eva, Jordan, Connor, Tsaftaris, Sotirios A.
Cine Magnetic Resonance Imaging (MRI) allows for understanding of the heart's function and condition in a non-invasive manner. Undersampling of the $k$-space is employed to reduce the scan duration, thus increasing patient comfort and reducing the ri
Externí odkaz:
http://arxiv.org/abs/2309.13385
Autor:
Pachetti, Eva, Colantonio, Sara
The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis, especially with me
Externí odkaz:
http://arxiv.org/abs/2309.11433
In this paper, we present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image. Our framework consists of a convolutional neural network backbone and a causality-extractor module that extr
Externí odkaz:
http://arxiv.org/abs/2309.10725
Autor:
Pachetti, Eva, Colantonio, Sara
Publikováno v:
In Artificial Intelligence In Medicine October 2024 156
Autor:
Pachetti, Eva1,2 (AUTHOR) eva.pachetti@isti.cnr.it, Colantonio, Sara1 (AUTHOR)
Publikováno v:
Bioengineering (Basel). Sep2023, Vol. 10 Issue 9, p1015. 21p.
Publikováno v:
Journal of Imaging; Jul2024, Vol. 10 Issue 7, p167, 14p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.