Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Pacharoni, Inés"'
Autor:
Parisi, Ignacio Bono, Pacharoni, Inés
In the theory of matrix-valued orthogonal polynomials, there exists a longstanding problem known as the Matrix Bochner Problem: the classification of all $N \times N$ weight matrices $W(x)$ such that the associated orthogonal polynomials are eigenfun
Externí odkaz:
http://arxiv.org/abs/2411.00798
In this work, we give some criteria that allow us to decide when two sequences of matrix-valued orthogonal polynomials are related via a Darboux transformation and to build explicitly such transformation. In particular, they allow us to see when and
Externí odkaz:
http://arxiv.org/abs/2407.20994
Autor:
Parisi, Ignacio Bono, Pacharoni, Inés
The Matrix Bochner Problem aims to classify weight matrices $W$ such that its algebra $\mathcal D(W)$, of all differential operators that have a sequence of these matrix orthogonal polynomials as eigenfunctions, contains a second-order differential o
Externí odkaz:
http://arxiv.org/abs/2403.03873
Autor:
Parisi, Ignacio Bono, Pacharoni, Inés
Publikováno v:
Journal of Approximation Theory (2024)
The Matrix Bochner Problem aims to classify which weight matrices have their sequence of orthogonal polynomials as eigenfunctions of a second-order differential operator. Casper and Yakimov, in [4], demonstrated that, under certain hypotheses, all so
Externí odkaz:
http://arxiv.org/abs/2303.14305
Autor:
Bono Parisi, Ignacio, Pacharoni, Inés
Publikováno v:
In Journal of Approximation Theory December 2024 304
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Martín, Rocío Díaz, Pacharoni, Inés
In this article, using the notion of group contraction, we obtain the spherical functions of the strong Gelfand pair $(\mathrm{M}(n),\mathrm{SO}(n))$ as an appropriate limit of spherical functions of the strong Gelfand pair $(\mathrm{SO}(n+1),\mathrm
Externí odkaz:
http://arxiv.org/abs/1807.03904
Publikováno v:
International Mathematics Research Notices, 2018, rny140
The subject of time-band-limiting, originating in signal processing, is dominated by the miracle that a naturally appearing integral operator admits a commuting differential one allowing for a numerically efficient way to compute its eigenfunctions.
Externí odkaz:
http://arxiv.org/abs/1801.10261
Publikováno v:
Inverse Problems, 33, 025005 (2017)
The problem of recovering a signal of finite duration from a piece of its Fourier transform was solved at Bell Labs in the $1960$'s, by exploiting a "miracle": a certain naturally appearing integral operator commutes with an explicit differential one
Externí odkaz:
http://arxiv.org/abs/1604.06510
Publikováno v:
SIGMA 11 (2015), 044, 14 pages
The main purpose of this paper is to extend to a situation involving matrix valued orthogonal polynomials and spherical functions, a result that traces its origin and its importance to work of Claude Shannon in laying the mathematical foundations of
Externí odkaz:
http://arxiv.org/abs/1410.1232