Zobrazeno 1 - 10
of 31
pro vyhledávání: '"PUSKÁS, Anna"'
Autor:
Muthiah, Dinakar, Puskás, Anna
The Kac-Moody affine Hecke algebra $\mathcal{H}$ was first constructed as the Iwahori-Hecke algebra of a $p$-adic Kac-Moody group by work of Braverman, Kazhdan, and Patnaik, and by work of Bardy-Panse, Gaussent, and Rousseau. Since $\mathcal{H}$ has
Externí odkaz:
http://arxiv.org/abs/2406.14447
A connected 1-factorisation is a 1-factorisation of a hypergraph for which the union of each pair of distinct 1-factors is a connected hypergraph. A uniform 1-factorisation is a 1-factorisation of a hypergraph for which the union of each pair of dist
Externí odkaz:
http://arxiv.org/abs/2307.13196
We study character varieties arising as moduli of representations of an orientable surface group into a reductive group $G$. We first show that if $G/Z$ acts freely on the representation variety, then both the representation variety and the character
Externí odkaz:
http://arxiv.org/abs/2209.02171
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Puskás, Anna
Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns and we give a survey of purely combinatorial constructions of prime powe
Externí odkaz:
http://arxiv.org/abs/1810.06190
In this paper we study the security of a proposal for Post-Quantum Cryptography from both a number theoretic and cryptographic perspective. Charles-Goren-Lauter in 2006 [CGL06] proposed two hash functions based on the hardness of finding paths in Ram
Externí odkaz:
http://arxiv.org/abs/1806.05709
We study a correction factor for Kac-Moody root systems which arises in the theory of $p$-adic Kac-Moody groups. In affine type, this factor is known, and its explicit computation is the content of the Macdonald constant term conjecture. The data of
Externí odkaz:
http://arxiv.org/abs/1806.05209
Autor:
Feaver, Amy, Puskas, Anna
This paper gives a method to find all imaginary multiquadratic fields of class number dividing $2^{m},$ provided the list of all imaginary quadratic fields of class number dividing $2^{m+1}$ is known. We give a bound on the degree of such fields. As
Externí odkaz:
http://arxiv.org/abs/1712.06769
Autor:
Patnaik, Manish, Puskás, Anna
Publikováno v:
Duke Math. J. 168, no. 4 (2019), 553-653
Starting from some linear algebraic data (a Weyl-group invariant bilinear form) and some arithmetic data (a bilinear Steinberg symbol), we construct a cover of a Kac-Moody group generalizing the work of Matsumoto. Specializing our construction over n
Externí odkaz:
http://arxiv.org/abs/1703.05265
Autor:
Puskás, Anna
This paper establishes a combinatorial link between different approaches to constructing Whittaker functions on a metaplectic group over a non-archimedean local field. We prove a metaplectic analogue of Tokuyama's Theorem and give a crystal descripti
Externí odkaz:
http://arxiv.org/abs/1605.05400