Zobrazeno 1 - 10
of 97
pro vyhledávání: '"PROTASOV, I. V."'
Autor:
Protasov, I. V.
We characterize finitary coarse spaces $X$ such that every permutation of $X$ is an asymorphism.
Comment: bornology, coarse space, asymorphism
Comment: bornology, coarse space, asymorphism
Externí odkaz:
http://arxiv.org/abs/2110.01375
Autor:
Protasov, I. V., Protasova, K. D.
Given two ordinal $\lambda$ and $\gamma$, let $f:[0,\lambda) \rightarrow [0,\gamma)$ be a function such that, for each $\alpha<\gamma$, $\sup\{f(t): t\in[0, \alpha]\}<\gamma.$ We define a mapping $d_{f}: [0,\lambda)\times [0,\lambda) \longrightarrow
Externí odkaz:
http://arxiv.org/abs/1603.08713
We define the scattered subsets of a group as asymptotic counterparts of scattered subspaces of a topological space, and prove that a subset $A$ of a group $G$ is scattered if and only if $A$ contains no piecewise shifted $IP$-subsets. For an amenabl
Externí odkaz:
http://arxiv.org/abs/1312.6946
Autor:
Protasov, I. V.
Let $X$ be an unbounded metric space, $B(x,r) = \{y\in X: d(x,y) \leqslant r\}$ for all $x\in X$ and $r\geqslant 0$. We endow $X$ with the discrete topology and identify the Stone-\v{C}ech compactification $\beta X$ of $X$ with the set of all ultrafi
Externí odkaz:
http://arxiv.org/abs/1310.2437
Autor:
Petrenko, O. V., Protasov, I. V.
Publikováno v:
Notre Dame J. Formal Logic 58, no. 3 (2017), 453-459
Let $G$ be a group, $X$ be an infinite transitive $G$-space. A free ultrafilter $\UU$ on $X$ is called $G$-selective if, for any $G$-invariant partition $\PP$ of $X$, either one cell of $\PP$ is a member of $\UU$, or there is a member of $\UU$ which
Externí odkaz:
http://arxiv.org/abs/1310.1827
Autor:
Protasov, I. V., Slobodianiuk, S.
For a group $G$ and a natural number $m$, a subset $A$ of $G$ is called $m$-thin if, for each finite subset $F$ of $G$, there exists a finite subset $K$ of $G$ such that $|Fg\cap A|\leqslant m$ for every $g\in G\setminus K$. We show that each $m$-thi
Externí odkaz:
http://arxiv.org/abs/1308.1497
Publikováno v:
Electronic Journal of Combinatorics. 19 (2012), #P12
Let $G$ be a group and $X$ be a $G$-space. A subset $F$ of $X$ is called a kaleidoscopical configuration if there exists a surjective coloring $\chi:X\to Y$ such that the restriction of $\chi$ on each subset $gF$, $g\in G$ is a bijection. We give som
Externí odkaz:
http://arxiv.org/abs/1001.0903
Autor:
Banakh, T., Protasov, I. V.
Publikováno v:
Izv. Gomel Univ. Voprosy Algebry. 2001. Issue 4(17). P.5--16
We survey some principal results and open problems related to colorings of algebraic and geometric objects endowed with symmetries.
Comment: Some references are updated
Comment: Some references are updated
Externí odkaz:
http://arxiv.org/abs/0901.3356
Autor:
Protasov, I. V.1 protasov@unicyb.kiev.ua, Protasova, O. I.1 polla@unicyb.kiev.ua
Publikováno v:
Semigroup Forum. Jul2007, Vol. 75 Issue 1, p237-240. 4p.
Autor:
PROTASOV, I. V., PROTASOVA, K. D.
Publikováno v:
Carpathian Mathematical Publications / Karpats'kì Matematičnì Publìkacìï; 2014, Vol. 6 Issue 2, p337-341, 5p