Zobrazeno 1 - 10
of 394
pro vyhledávání: '"POPESCU, Cristian"'
Autor:
Popescu, Cristian D., Yin, Wei
Greither and Kurihara proved a theorem about the commutativity of projective limits and Fitting ideals for modules over the classical equivariant Iwasawa algebra $\Lambda_G=\mathbb{Z}_p[[T]][G]$, where $G$ is a finite, abelian group and $\Bbb Z_p$ is
Externí odkaz:
http://arxiv.org/abs/2409.11562
In \cite{FGHP}, the first author and his collaborators proved an equivariant Tamagawa number formula for the special value at $s=0$ of a Goss--type $L$--function, equivariant with respect to a Galois group $G$, and associated to a Drinfeld module def
Externí odkaz:
http://arxiv.org/abs/2406.13976
We improve upon the recent keystone result of Dasgupta-Kakde on the $\Bbb Z[G(H/F)]^-$-Fitting ideals of certain Selmer modules $Sel_S^T(H)^-$ associated to an abelian, CM extension $H/F$ of a totally real number field $F$ and use this to compute the
Externí odkaz:
http://arxiv.org/abs/2303.13603
Autor:
Bley, Werner, Popescu, Cristian D.
We prove an Equivariant Main Conjecture in Iwasawa Theory along any rank one, sign-normalized Drinfeld modular, split at infinity Iwasawa tower of a general function field of characteristic p, for the Iwasawa modules recently considered by Greither a
Externí odkaz:
http://arxiv.org/abs/2209.02440
Autor:
Green, Nathan, Popescu, Cristian
We fix motivic data $(K/F, E)$ consisting of a Galois extension $K/F$ of characteristic $p$ global fields with arbitrary abelian Galois group $G$ and an ableian $t$-module $E$, defined over a certain Dedekind subring of $F$. For this data, one can de
Externí odkaz:
http://arxiv.org/abs/2206.03541
Autor:
POPESCU, Cristian1 popescucristian07@yahoo.com, BĂLAN, Mihaela1 mihaela_balan_if@yahoo.com
Publikováno v:
Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development. 2024, Vol. 24 Issue 2, p809-816. 8p.
Autor:
BĂLAN, Mihaela1 mihaela_balan_if@yahoo.com, POPESCU, Cristian1 popescucristian07@yahoo.com, NIȚU, Oana Alina2 oanaalinanitu1111@gmail.com
Publikováno v:
Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development. 2024, Vol. 24 Issue 2, p145-155. 11p.
Publikováno v:
Alg. Number Th. 16 (2022) 2215-2264
We fix data $(K/F, E)$ consisting of a Galois extension $K/F$ of characteristic $p$ global fields with arbitrary abelian Galois group $G$ and a Drinfeld module $E$ defined over a certain Dedekind subring of $F$. For this data, we define a $G$-equivar
Externí odkaz:
http://arxiv.org/abs/2004.05144
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Manea, Cristina Alexandra, Badiu, Dumitru Cristinel, Ploscaru, Ioan Cristian, Zgura, Anca, Bacinschi, Xenia, Smarandache, Catalin Gabriel, Serban, Dragos, Popescu, Cristian Gabriel, Grigorean, Valentin Titus, Botnarciuc, Vladimir
Publikováno v:
In Annals of Medicine and Surgery July 2022 79