Zobrazeno 1 - 10
of 28
pro vyhledávání: '"PLIEGO, JAVIER"'
Autor:
Pliego, Javier
Let $k\in \mathbb{N}$ and $s\geq k(\log k+3.20032)$, and assume that $\psi, \varphi$ are increasing functions tending to infinity with $\psi(x)=o(\log x)$ and such that $\psi(n)\sim\psi\big(n/\varphi(n)\big).$ Then, there exists a subsequence $\mathf
Externí odkaz:
http://arxiv.org/abs/2410.11832
Autor:
Pliego, Javier
When $g\in\mathbb{N}$ we say that $A\subset\mathbb{N}$ is a $B_{2}[g]$ sequence if every $m\in\mathbb{N}$ has at most $g$ distinct representations of the shape $m=b_{1}+b_{2}$ with $b_{1}\leq b_{2}$ and $b_{1},b_{2}\in A$. We show for every $0<\varep
Externí odkaz:
http://arxiv.org/abs/2405.04154
Autor:
Pliego, Javier
We analyse a collection of twisted mixed moments of the Riemann zeta function and establish the validity of asymptotic formulae comprising on some instances secondary terms of the shape $P(\log T) T^{C}$ for a suitable constant $C<1$ and a polynomial
Externí odkaz:
http://arxiv.org/abs/2211.11450
Autor:
Pliego, Javier
We examine a family of three-dimensional exponential sums with monomials and provide estimates which are in some instances sharper than those stemming from approaches entailing the use of existing bounds pertaining to analogous sums.
Comment: 33
Comment: 33
Externí odkaz:
http://arxiv.org/abs/2211.02096
Autor:
Pliego, Javier
We analyse a collection of mixed moments of the Riemann zeta function and establish the validity of asymptotic formulae. Such examinations are performed both unconditionally and under the assumption of a weaker version of the $abc$ conjecture.
C
C
Externí odkaz:
http://arxiv.org/abs/2210.15321
Autor:
Pliego, Javier
Publikováno v:
Q. J. Math. 71 (2020), no. 4, 1219-1235
We show that almost every positive integer can be expressed as a sum of four squares of integers represented as the sums of three positive cubes.
Comment: 14 pages. To appear in Quarterly Journal of Mathematics
Comment: 14 pages. To appear in Quarterly Journal of Mathematics
Externí odkaz:
http://arxiv.org/abs/2010.14572
Autor:
Pliego, Javier
We investigate the existence of representations of every large positive integer as a sum of $k$-th powers of integers represented as certain diagonal forms. In particular, we consider a family of diagonal forms and discuss the problem of giving a uni
Externí odkaz:
http://arxiv.org/abs/2010.14567
Autor:
Pliego, Javier
We give an upper bound for the minimum $s$ with the property that every sufficiently large integer can be represented as the sum of $s$ positive $k$-th powers of integers represented as the sum of three positive cubes for the cases $2\leq k\leq 4.$
Externí odkaz:
http://arxiv.org/abs/2010.14559
Autor:
Pliego, Javier
We investigate the asymptotic formula for the number of representations of a large positive integer as a sum of $k$-th powers of integers represented as the sums of three positive cubes, counted with multiplicities. We also obtain a lower bound for t
Externí odkaz:
http://arxiv.org/abs/2010.14536
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.