Zobrazeno 1 - 10
of 156
pro vyhledávání: '"PIOTR OPROCHA"'
Autor:
Natalia Czyzewska, Jan Kusiak, Pawel Morkisz, Piotr Oprocha, Maciej Pietrzyk, Pawel Przybylowicz, Lukasz Rauch, Danuta Szeliga
Publikováno v:
IEEE Access, Vol 10, Pp 86793-86812 (2022)
This paper deals with the solution of delay differential equations describing evolution of dislocation density in metallic materials. Hardening, restoration, and recrystallization characterizing the evolution of dislocation populations provide the es
Externí odkaz:
https://doaj.org/article/eed468e3aabc454ab8cb9f53b50b9daf
Autor:
Piotr Oprocha, Natalia Czyżewska, Konrad Klimczak, Jan Kusiak, Paweł Morkisz, Maciej Pietrzyk, Paweł Potorski, Danuta Szeliga
Publikováno v:
Materials, Vol 16, Iss 9, p 3316 (2023)
Modern construction materials, including steels, have to combine strength with good formability. In metallic materials, these features are obtained for heterogeneous multiphase microstructures. Design of such microstructures requires advanced numeric
Externí odkaz:
https://doaj.org/article/f48394a378df4eafa26fe09ddc308bb3
Autor:
Łukasz Cholewa, Piotr Oprocha
Publikováno v:
Entropy, Vol 23, Iss 9, p 1153 (2021)
The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps existing in the literature. Similar result is obtained for unimodal m
Externí odkaz:
https://doaj.org/article/d2c4803387dd4933bc9b5d341ac781cf
Autor:
Piotr Oprocha, Paweł Wilczyński
Publikováno v:
Opuscula Mathematica, Vol 30, Iss 1, Pp 5-36 (2010)
In the present paper we prove distributional chaos for the Poincaré map in the perturbed equation \[\dot{z}=\left(1 + e^{i\kappa t} |z|^2\right)\bar{z}^2 - N e^{-i\frac{\pi}{3}}.\] Heteroclinic and homoclinic connections between two periodic solutio
Externí odkaz:
https://doaj.org/article/9ead54f7c8c34c1496a60a0bef9573d3
Autor:
Piotr Oprocha
Publikováno v:
Opuscula Mathematica, Vol 25, Iss 2, Pp 261-268 (2005)
In this paper we present equivalent definitions of chain recurrent set for continuous dynamical systems. This definitions allow us to define chain recurrent set in topological spaces.
Externí odkaz:
https://doaj.org/article/2d4d51af1a6d4b81ad62b20a29619c7f
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2013 (2013)
We study the relationship between DC3 pairs and the set of discontinuities in distribution function. We also check relations between DC3 pairs for a continuous map and its higher iterates.
Externí odkaz:
https://doaj.org/article/f10dd13a86284b6c9f728ed1b04dd582
Autor:
Jakub Fichna, Jodianne T Wood, Malvina Papanastasiou, Subramanian K Vadivel, Piotr Oprocha, Maciej Sałaga, Marta Sobczak, Anna Mokrowiecka, Adam I Cygankiewicz, Piotr K Zakrzewski, Ewa Małecka-Panas, Wanda M Krajewska, Piotr Kościelniak, Alexandros Makriyannis, Martin A Storr
Publikováno v:
PLoS ONE, Vol 8, Iss 12, p e85073 (2013)
AIMS: Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown
Externí odkaz:
https://doaj.org/article/41cbd30d09b1462080790b70223e7a13
Autor:
Jernej Činč, Piotr Oprocha
Publikováno v:
Proceedings of the London Mathematical Society. 125:318-357
The main goal of this paper is to study topological and measure-theoretic properties of an intriguing family of strange planar attractors. Building toward these results, we first show that any generic Lebesgue measure-preserving map
Autor:
Konrad Klimczak, Piotr Oprocha, Jan Kusiak, Danuta Szeliga, Paweł Morkisz, Paweł Przybyłowicz, Natalia Czyżewska, Maciej Pietrzyk
Publikováno v:
Mathematical Problems in Engineering. 2022:1-15
The need for a reliable prediction of the distribution of microstructural parameters in metallic materials during processing was the motivation for this work. The model describing the evolution of dislocation populations, which considers the stochast
Publikováno v:
Journal of Dynamics and Differential Equations. 35:1175-1201
We develop a technique, pseudo-suspension, that applies to invariant sets of homeomorphisms of a class of annulus homeomorphisms we describe, Handel–Anosov–Katok (HAK) homeomorphisms, that generalize the homeomorphism first described by Handel. G