Zobrazeno 1 - 10
of 659
pro vyhledávání: '"PILIPOVIĆ, STEVAN"'
Compiling essential results for non-quasianalytic ultradistribution spaces and Colombeau versions of generalized ultradistribution algebras, we analyze strong $B$- and strong $R$-association of a generalized ultradistribution $[(f_\varepsilon)]$. The
Externí odkaz:
http://arxiv.org/abs/2411.07054
Autor:
Pilipović, Stevan, Prangoski, Bojan
We consider the space $\mathcal{D}'^r_L(M;E)$ of distributional sections of the smooth complex vector bundle $E\rightarrow M$ whose Sobolev wave front set of order $r\in\mathbb{R}$ lies in the closed conic subset $L$ of $T^*M\backslash0$. We introduc
Externí odkaz:
http://arxiv.org/abs/2408.10741
Publikováno v:
Pilipovi\'c, S., Prangoski, B. & Vu\v{c}kovi\'c, \DJ. Extension of localisation operators to ultradistributional symbols with super-exponential growth. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 172 (2022)
In the Gelfand-Shilov setting, the localisation operator $A^{\varphi_1,\varphi_2}_a$ is equal to the Weyl operator whose symbol is the convolution of $a$ with the Wigner transform of the windows $\varphi_2$ and $\varphi_1$. We employ this fact, to ex
Externí odkaz:
http://arxiv.org/abs/2408.02437
Autor:
Pilipović, Stevan, Vučković, Đorđe
In the first part we analyze space $\mathcal G^*(\mathbb R^{n}_+)$ and its dual through Laguerre expansions when these spaces correspond to a general sequence $\{M_p\}_{p\in\mathbb N_0}$, where $^*$ is a common notation for the Beurling and Roumieu c
Externí odkaz:
http://arxiv.org/abs/2408.02422
We define and characterize ultradifferentiable functions and their corresponding ultradistributions on $\RR^d_+$ using iterates of the Laguerre operator. The characterization is based on decay or growth conditions of the coefficients in their Laguerr
Externí odkaz:
http://arxiv.org/abs/2407.09422
We use the iterates of the Laguerre operator to introduce Pilipovi\'c spaces on positive orthants. It is shown that such spaces coincide with $G-$type spaces $g_\alpha^\alpha(\mathbb{R}^d_+)$ and $G_\alpha^\alpha(\mathbb{R}^d_+)$, when $\alpha > 1$,
Externí odkaz:
http://arxiv.org/abs/2405.10694
We connect through the Fourier transform shift-invariant Sobolev type spaces $V_s\subset H^s$, $s\in\mathbb R,$ and the spaces of periodic distributions and analyze the properties of elements in such spaces with respect to the product. If the series
Externí odkaz:
http://arxiv.org/abs/2403.10350
Inductive and projective type sequence spaces of sub- and super-exponential growth, and the corresponding inductive and projective limits of modulation spaces are considered as a framework for almost diagonalization of pseudo-differential operators.
Externí odkaz:
http://arxiv.org/abs/2402.18341
We treat some classes of stochastic partial differential equations of Schr\"odinger type within the framework of white noise analysis, combined with Wiener-It\^o chaos expansions and pseudodifferential operator methods. The initial data and potential
Externí odkaz:
http://arxiv.org/abs/2401.00325