Zobrazeno 1 - 10
of 258
pro vyhledávání: '"PETUKHOV, ALEXEY"'
Autor:
Petukhov, Alexey V., Sierra, Susan J.
Let $W = \mathbb{C}[t,t^{-1}]\partial_t$ be the Witt algebra of algebraic vector fields on $\mathbb{C}^\times$ and let $Vir$ be the Virasoro algebra, the unique nontrivial central extension of $W$. In this paper, we study the Poisson ideal structure
Externí odkaz:
http://arxiv.org/abs/2106.02565
Autor:
Ignatyev, Mikhail V., Petukhov, Alexey
Let $\mathfrak{n}$ be a locally nilpotent infinite-dimensional Lie algebra over $\mathbb{C}$. Let $\mathrm{U}(\mathfrak{n})$ and $\mathrm{S}(\mathfrak{n})$ be its universal enveloping algebra and its symmetric algebra respectively. Consider the Jacob
Externí odkaz:
http://arxiv.org/abs/2004.01068
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Avdeev, Roman, Petukhov, Alexey
Publikováno v:
Transformation Groups, vol. 26 (2021), no. 3, 719-774
Let $G$ be a symplectic or special orthogonal group, let $H$ be a connected reductive subgroup of $G$, and let $X$ be a flag variety of $G$. We classify all triples $(G,H,X)$ such that the natural action of $H$ on $X$ is spherical. For each of these
Externí odkaz:
http://arxiv.org/abs/1812.00936
Autor:
Penkov, Ivan, Petukhov, Alexey
We present an algorithm which computes the annihilator in ${\rm U}(\frak{sl}(\infty))$ of any simple highest weight $\frak{sl}(\infty)$-module $L_\frak b(\lambda)$. This algorithm is based on an infinite version of the Robinson-Schensted algorithm.
Externí odkaz:
http://arxiv.org/abs/1801.06692
Autor:
Avdeev, Roman, Petukhov, Alexey
Publikováno v:
Algebras and Representation Theory, vol. 23 (2020), no. 3, 541-581
Let $G$ be a connected semisimple algebraic group and let $H \subset G$ be a connected reductive subgroup. Given a flag variety $X$ of $G$, a result of Vinberg and Kimelfeld asserts that $H$ acts spherically on $X$ if and only if for every irreducibl
Externí odkaz:
http://arxiv.org/abs/1711.09801
Autor:
Petukhov, Alexey V., Sierra, Susan J.
Let $W_+$ be the positive Witt algebra, which has a $C$-basis $\{e_n: n \in Z_{\geq 1}\}$, with Lie bracket $[ e_i, e_j] = (j-i) e_{i+j}$. We study the two-sided ideal structure of the universal enveloping algebra $U(W_+)$ of $W_+$. We show that if $
Externí odkaz:
http://arxiv.org/abs/1710.10029
Autor:
Petukhov, Alexey
Let $\frak g$ be a semisimple Lie algebra and $\frak k\subset\frak g$ be a reductive subalgebra. We say that a $\frak g$-module $M$ is a bounded $(\frak g, \frak k)$-module if $M$ is a direct sum of simple finite-dimensional $\frak k$-modules and the
Externí odkaz:
http://arxiv.org/abs/1710.03737
Autor:
Ignatyev, Mikhail, Petukhov, Alexey
Publikováno v:
In Journal of Algebra 1 November 2021 585:501-557
Autor:
Petukhov, Alexey
Let $\frak g$ be a simple finite-dimensional Lie algebra over an algebraically closed field $\mathbb F$ of characteristic 0. We denote by $\operatorname{U}(\frak g)$ the universal enveloping algebra of $\frak g$. To any nilpotent element $e\in \frak
Externí odkaz:
http://arxiv.org/abs/1610.03423