Zobrazeno 1 - 6
of 6
pro vyhledávání: '"PEDROTTI, ANDREA"'
Autor:
Kesen, Ilker, Pedrotti, Andrea, Dogan, Mustafa, Cafagna, Michele, Acikgoz, Emre Can, Parcalabescu, Letitia, Calixto, Iacer, Frank, Anette, Gatt, Albert, Erdem, Aykut, Erdem, Erkut
With the ever-increasing popularity of pretrained Video-Language Models (VidLMs), there is a pressing need to develop robust evaluation methodologies that delve deeper into their visio-linguistic capabilities. To address this challenge, we present Vi
Externí odkaz:
http://arxiv.org/abs/2311.07022
\emph{Funnelling} (Fun) is a recently proposed method for cross-lingual text classification (CLTC) based on a two-tier learning ensemble for heterogeneous transfer learning (HTL). In this ensemble method, 1st-tier classifiers, each working on a diffe
Externí odkaz:
http://arxiv.org/abs/2110.14764
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Progress in Organic Coatings December 2014 77(12) Part A:1987-1992
Publikováno v:
SAC
SAC 2021: 36th ACM/SIGAPP Symposium On Applied Computing, pp. 685–688, Online conference, 22-26/03/2021
info:cnr-pdr/source/autori:Moreo A.; Pedrotti A.; Sebastiani F./congresso_nome:SAC 2021: 36th ACM%2FSIGAPP Symposium On Applied Computing/congresso_luogo:Online conference/congresso_data:22-26%2F03%2F2021/anno:2021/pagina_da:685/pagina_a:688/intervallo_pagine:685–688
Proceedings of the 36th Annual ACM Symposium on Applied Computing
SAC '21: Proceedings of the 36th Annual ACM Symposium on Applied Computing
SAC 2021: 36th ACM/SIGAPP Symposium On Applied Computing, pp. 685–688, Online conference, 22-26/03/2021
info:cnr-pdr/source/autori:Moreo A.; Pedrotti A.; Sebastiani F./congresso_nome:SAC 2021: 36th ACM%2FSIGAPP Symposium On Applied Computing/congresso_luogo:Online conference/congresso_data:22-26%2F03%2F2021/anno:2021/pagina_da:685/pagina_a:688/intervallo_pagine:685–688
Proceedings of the 36th Annual ACM Symposium on Applied Computing
SAC '21: Proceedings of the 36th Annual ACM Symposium on Applied Computing
Funnelling (Fun) is a method for cross-lingual text classification (CLC) based on a two-tier ensemble for heterogeneous transfer learning. In Fun, 1st-tier classifiers, each working on a different, language-dependent feature space, return a vector of
Autor:
Aloia, Nicola, Amato, Giuseppe, Bartalesi, Valentina, Benedetti, Filippo, Bolettieri, Paolo, Carrara, Fabio, Casarosa, Vittore, Ciampi, Luca, Concordia, Cesare, Corbara, Silvia, Benedetto, Marco, Esuli, Andrea, Falchi, Fabrizio, Gennaro, Claudio, Lagani, Gabriele, Valerio Massoli, Fabio, Meghini, Carlo, Messina, Nicola, Metilli, Daniele, Molinari, Alessio, Moreo, Alejandro, Nardi, Alessandro, Pedrotti, Andrea, Pratelli, Nicolò, Rabitti, Fausto, Savino, Pasquale, Sebastiani, Fabrizio, Thanos, Costantino, Trupiano, Luca, Vadicamo, Lucia, Vairo, Claudio
Publikováno v:
[Research Report] Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo". 2020
The Artificial Intelligence for Media and Humanities laboratory (AIMH) has the mission to investigate and advance the state of the art in the Artificial Intelligence field, specifically addressing applications to digital media and digital humanities,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::be634f984a583d4f47f8f550c5cfd961
https://hal.archives-ouvertes.fr/hal-03466721/file/2020_440133.pdf
https://hal.archives-ouvertes.fr/hal-03466721/file/2020_440133.pdf