Zobrazeno 1 - 10
of 10
pro vyhledávání: '"PB Pepijn Cox"'
Publikováno v:
Proc. of the 19th IFAC Symposium System Identification: learning models for decision and control
This paper describes the LPVcore software package for MATLAB developed to model, simulate, estimate and control systems via linear parameter-varying (LPV) input-output (IO), state-space (SS) and linear fractional (LFR) representations. In the LPVcore
Autor:
Wim L. van Rossum, PB Pepijn Cox
Recent advances in digital beam forming for phased arrays in combination with digital signal processing should enable the development of multibeam radar in a bistatic configuration. In the bistatic setting, the pulse travelling outward from the trans
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c39f6945825d77246dbc164b4f6e115c
Autor:
PB Pepijn Cox, Mohamed Abdelmonim Hassan Darwish, Gianluigi Pillonetto, Roland Tóth, Ioannis Proimadis
Publikováno v:
Automatica. 97:92-103
We consider networked control systems (NCSs) composed of a linear plant and a linear controller interconnected by packet-based communication channels with communication constraints. We are interested in the setup where direct-feedthrough terms are pr
Publikováno v:
IEEE Transactions on Automatic Control, 63(11):8334291, 3865-3872. Institute of Electrical and Electronics Engineers
IEEE Transactions on Automatic Control
IEEE Transactions on Automatic Control
This paper deals with the certification problem for robust quadratic stability, robust state convergence, and robust quadratic performance of linear systems that exhibit bounded rates of variation in their parameters. We consider both continuous-time
Publikováno v:
Automatica
Automatica, Elsevier, 2018, 97, pp.392-403. ⟨10.1016/j.automatica.2018.08.021⟩
Automatica, 2018, 97, pp.392-403. ⟨10.1016/j.automatica.2018.08.021⟩
Automatica, 97, 392-403. Elsevier
Automatica, Elsevier, 2018, 97, pp.392-403. ⟨10.1016/j.automatica.2018.08.021⟩
Automatica, 2018, 97, pp.392-403. ⟨10.1016/j.automatica.2018.08.021⟩
Automatica, 97, 392-403. Elsevier
How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an open question, as identification methods propose
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d88f705d1b58ef8b946318cfd9179a5
https://hal.archives-ouvertes.fr/hal-01931160
https://hal.archives-ouvertes.fr/hal-01931160
Publikováno v:
CDC
2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, 2018-January, 3575-3581
2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, 2018-January, 3575-3581
In this paper, we introduce a procedure for global identification of linear parameter-varying (LPV) discrete-time state-space (SS) models with a static, affine dependency structure in a computationally efficient way. The aim is to develop off-the-she
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::185974dde907ec2f2b986a566b4f6495
https://doi.org/10.1109/CDC.2017.8264184
https://doi.org/10.1109/CDC.2017.8264184
Publikováno v:
IFAC-PapersOnLine. 48:91-96
Many global identification approaches described in the literature for estimating linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling parameter suffer heavily from the curse of dimensionality m
Publikováno v:
CDC
54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan, 66-71
STARTPAGE=66;ENDPAGE=71;TITLE=54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan
54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan, 66-71
STARTPAGE=66;ENDPAGE=71;TITLE=54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan
In this paper, we introduce a nonparametric approach in a Bayesian setting to efficiently estimate, both in the stochastic and computational sense, linear parameter-varying (LPV) input-output models under general noise conditions of Box-Jenkins (BJ)
Publikováno v:
Proceedings of the American Control Conference (ACC), 1-3 July 2015, Chicago, Illinois, 831-837
STARTPAGE=831;ENDPAGE=837;TITLE=Proceedings of the American Control Conference (ACC), 1-3 July 2015, Chicago, Illinois
ACC
STARTPAGE=831;ENDPAGE=837;TITLE=Proceedings of the American Control Conference (ACC), 1-3 July 2015, Chicago, Illinois
ACC
This paper discusses an improvement on the extension of linear subspace methods (originally developed in the Linear Time-Invariant (LTI) context) to the identification of Linear Parameter-Varying (LPV) and state-affine nonlinear system models. This i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e31e233cbfc58ef0d3fd4da963ff2fd5
https://research.tue.nl/nl/publications/ebe0812a-d74d-4cf3-8588-42486c1df99b
https://research.tue.nl/nl/publications/ebe0812a-d74d-4cf3-8588-42486c1df99b
Autor:
PB Pepijn Cox, Roland Tóth
Publikováno v:
Automatica, 123:109296. Elsevier
In this paper, we establish a unified framework for subspace identification (SID) of linear parameter-varying (LPV) systems to estimate LPV state–space (SS) models in innovation form. This framework enables us to derive novel LPV SID schemes that a