Zobrazeno 1 - 10
of 249
pro vyhledávání: '"PAUL, SOURABH"'
We analyze the impact of the Reserve Bank of India's (RBI) monetary policy communications on Indian financial market from April 2014 to June 2024 using advanced natural language processing techniques. Employing BERTopic for topic modeling and a fine-
Externí odkaz:
http://arxiv.org/abs/2411.04808
Autor:
Wang, Haochen, Masui, Kiyoshi, Bandura, Kevin, Chakraborty, Arnab, Dobbs, Matt, Foreman, Simon, Gray, Liam, Halpern, Mark, Joseph, Albin, MacEachern, Joshua, Mena-Parra, Juan, Miller, Kyle, Newburgh, Laura, Paul, Sourabh, Reda, Alex, Sanghavi, Pranav, Siegel, Seth, Wulf, Dallas
The main challenge of 21 cm cosmology experiments is astrophysical foregrounds which are difficult to separate from the signal due to telescope systematics. An earlier study has shown that foreground residuals induced by antenna gain errors can be es
Externí odkaz:
http://arxiv.org/abs/2408.08949
Autor:
MeerKLASS Collaboration, Barberi-Squarotti, Matilde, Bernal, José L., Bull, Philip, Camera, Stefano, Carucci, Isabella P., Chen, Zhaoting, Cunnington, Steven, Engelbrecht, Brandon N., Fonseca, José, Grainge, Keith, Irfan, Melis O., Li, Yichao, Mazumder, Aishrila, Paul, Sourabh, Pourtsidou, Alkistis, Santos, Mario G., Spinelli, Marta, Wang, Jingying, Witzemann, Amadeus, Wolz, Laura
We present results from MeerKAT single-dish HI intensity maps, the final observations to be performed in L-band in the MeerKAT Large Area Synoptic Survey (MeerKLASS) campaign. The observations represent the deepest single-dish HI intensity maps to da
Externí odkaz:
http://arxiv.org/abs/2407.21626
Autor:
CHIME Collaboration, Amiri, Mandana, Bandura, Kevin, Chakraborty, Arnab, Dobbs, Matt, Fandino, Mateus, Foreman, Simon, Gan, Hyoyin, Halpern, Mark, Hill, Alex S., Hinshaw, Gary, Höfer, Carolin, Landecker, T. L., Li, Zack, MacEachern, Joshua, Masui, Kiyoshi, Mena-Parra, Juan, Milutinovic, Nikola, Mirhosseini, Arash, Newburgh, Laura, Ordog, Anna, Paul, Sourabh, Pen, Ue-Li, Pinsonneault-Marotte, Tristan, Reda, Alex, Shaw, J. Richard, Siegel, Seth R., Vanderlinde, Keith, Wang, Haochen, Wiebe, D. V., Wulf, Dallas
We report the detection of 21 cm emission at an average redshift $\bar{z} = 2.3$ in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-$\alpha$ forest from eBOSS. Data collecte
Externí odkaz:
http://arxiv.org/abs/2309.04404
We report the first direct detection of the cosmological power spectrum using the intensity signal from 21-cm emission of neutral hydrogen (HI), derived from interferometric observations with the L-band receivers of the new MeerKAT radio telescope. I
Externí odkaz:
http://arxiv.org/abs/2301.11943
Autor:
Tiwari, Ravi1 (AUTHOR) ravitiwari.tiwariravi@gmail.com, Paul, Sourabh1 (AUTHOR) sourabhpaul26@gmail.com, Singh, Manoj Kumar2 (AUTHOR) manojmathism@gmail.com, Rahul, Amit Kumar3 (AUTHOR) akrahulism@gmail.com, Akilan, K.1 (AUTHOR) akilan.k2022@vitstudent.ac.in
Publikováno v:
EURASIP Journal on Wireless Communications & Networking. 12/18/2024, Vol. 2024 Issue 1, p1-19. 19p.
One of the major goals of future cosmic microwave background (CMB) $B$-mode polarization experiments is the detection of primordial gravitational waves through an unbiased measurement of the tensor-to-scalar ratio $r$. Robust detection of this signal
Externí odkaz:
http://arxiv.org/abs/2209.12672
Autor:
Reda, Alex, Pinsonneault-Marotte, Tristan, Deng, Meiling, Amiri, Mandana, Bandura, Kevin, Chakraborty, Arnab, Foreman, Simon, Halpern, Mark, Hill, Alex S., Höfer, Carolin, Kania, Joseph, Landecker, T. L., MacEachern, Joshua, Masui, Kiyoshi, Mena-Parra, Juan, Milutinovic, Nikola, Newburgh, Laura, Ordog, Anna, Paul, Sourabh, Shaw, J. Richard, Siegel, Seth R., Smegal, Rick, Wang, Haochen, Wulf, Dallas
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter for
Externí odkaz:
http://arxiv.org/abs/2207.13876
Publikováno v:
In IATSS Research April 2025 49(1):10-26
Autor:
Daoud, Adel, Jordan, Felipe, Sharma, Makkunda, Johansson, Fredrik, Dubhashi, Devdatt, Paul, Sourabh, Banerjee, Subhashis
In this paper, we use deep learning to estimate living conditions in India. We use both census and surveys to train the models. Our procedure achieves comparable results to those found in the literature, but for a wide range of outcomes.
Externí odkaz:
http://arxiv.org/abs/2202.00109