Zobrazeno 1 - 10
of 2 484
pro vyhledávání: '"PAPAGEORGIOU, NIKOLAOS"'
Autor:
Ji, Chao, Papageorgiou, Nikolaos S.
We consider a parametric nonautonomous $(p, q)$-equation with unbalanced growth as follows \begin{align*} \left\{ \begin{aligned} &-\Delta_p^\alpha u(z)-\Delta_q u(z)=\lambda \vert u(z)\vert^{\tau-2}u(z)+f(z, u(z)), \quad \quad \hbox{in }\Omega,\\ &u
Externí odkaz:
http://arxiv.org/abs/2309.01354
Publikováno v:
Recent Advances in Mathematical Analysis, Trends in Mathematics, Birkhauser, Cham, 2023, pp. 425-441
We consider a parametric Dirichlet problem driven by the anisotropic $(p,q)$-Laplacian and with a reaction which exhibits the combined effects of a superlinear (convex) term and of a negative sublinear term. Using variational tools and critical group
Externí odkaz:
http://arxiv.org/abs/2305.11515
Publikováno v:
Topol. Methods Nonlinear Anal. 61:1 (2023), str. 393-422
We consider a Neumann boundary value problem driven by the anisotropic $(p,q)$-Laplacian plus a parametric potential term. The reaction is ``superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. A
Externí odkaz:
http://arxiv.org/abs/2305.01037
Publikováno v:
Appl. Anal. 102:4 (2023), 1059-1076
We consider an anisotropic $(p,2)$-equation, with a parametric and superlinear reaction term. We show that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (s
Externí odkaz:
http://arxiv.org/abs/2304.04201
We consider an eigenvalue problem for a double-phase differential operator with unbalanced growth. Using the Nehari method, we show that the problem has a continuous spectrum determined by the minimal eigenvalue of the weighted p-Laplacian.
Externí odkaz:
http://arxiv.org/abs/2302.10475
Publikováno v:
Potential Anal. 57:1 (2022), 55-82
We consider a nonlinear parametric Neumann problem driven by the anisotropic $(p,q)$-Laplacian and a reaction which exhibits the combined effects of a singular term and of a parametric superlinear perturbation. We are looking for positive solutions.
Externí odkaz:
http://arxiv.org/abs/2205.09535