Zobrazeno 1 - 10
of 54 778
pro vyhledávání: '"P. Weil"'
Autor:
Kionke, Steffen
A famous conjecture of Chowla on the least primes in arithmetic progressions implies that the abscissa of convergence of the Weil representation zeta function for a procyclic group $G$ only depends on the set $S$ of primes dividing the order of $G$ a
Externí odkaz:
http://arxiv.org/abs/2411.12848
Given an abelian variety $A$ over a global function field $K$ of characteristic $p>0$ and an irreducible complex continuous representation $\psi$ of the absolute Galois group of $K$, we obtain a BSD-type formula for the leading term of Hasse--Weil--A
Externí odkaz:
http://arxiv.org/abs/2411.12404
Autor:
Morin, Adrien
Let $X$ be a variety over a finite field. Given an order $R$ in a semi-simple algebra over the rationals and a constructible \'etale sheaf $F$ of $R$-modules over $X$, one can consider a natural non-commutative $L$-function associated with $F$. We pr
Externí odkaz:
http://arxiv.org/abs/2411.07896
Autor:
Hanzer, Marcela, Savin, Gordan
Using exceptional theta correspondences, we prove that certain Weil representations of $p$-adic groups are multiplicity free and determine irreducible quotients.
Externí odkaz:
http://arxiv.org/abs/2411.01243
A simple arc $\Gamma = \gamma(0, T]$, growing into the unit disk $\mathbb D$ from its boundary, generates a driving term $\xi$ and a conformal welding $\phi$ through the Loewner differential equation. When $\Gamma$ is the slit of a Weil--Petersson qu
Externí odkaz:
http://arxiv.org/abs/2410.14346
Autor:
Meira, Felipe Zingali
Let $k$ be a number field and $\mathcal{E}$ an elliptic curve defined over the function field $k(T)$ given by an equation of the form $y^2 = a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_i \in k[T]$ and $deg(a_i) \leq 2$. We explore the conic bundle struct
Externí odkaz:
http://arxiv.org/abs/2410.12066
Autor:
Angdinata, David Kurniadi
We prove an analogue of Deligne's period conjecture for the special value of the L-function of an abelian variety over a global function field twisted by an Artin representation. We illustrate this in action for an example of an elliptic curve twiste
Externí odkaz:
http://arxiv.org/abs/2410.05196
Autor:
Kędzierski, Dawid E., Krasoń, Piotr
In the work of M. A. Papanikolas and N. Ramachandran [A Weil-Barsotti formula for Drinfeld modules, Journal of Number Theory 98, (2003), 407-431] the Weil-Barsotti formula for the function field case concerning $\Ext_{\tau}^1(E,C)$ where $E$ is a Dri
Externí odkaz:
http://arxiv.org/abs/2409.04029
Autor:
Asayama, Takuya, Taguchi, Yuichiro
We study the structure of the Mordell--Weil groups of semiabelian varieties over large algebraic extensions of a finitely generated field of characteristic zero. We consider two types of algebraic extensions in this paper; one is of extensions obtain
Externí odkaz:
http://arxiv.org/abs/2408.03495
Autor:
Lowenstein, Ashton
Weil-Petersson volumes are the volumes of the moduli spaces of bordered Riemann surfaces and have played an important role in the relationship between two-dimensional quantum gravity and algebraic geometry. In the last couple years progress has been
Externí odkaz:
http://arxiv.org/abs/2407.16039