Zobrazeno 1 - 10
of 24 560
pro vyhledávání: '"P. Vikram"'
Autor:
Balasubramanian Esakki, P. Gokul Raj, Lung-Jieh Yang, Ekanshu Khurana, Sahadasan Khute, P. Vikram
Publikováno v:
Journal of Applied and Computational Mechanics, Vol 8, Iss 2, Pp 475-484 (2022)
Unmanned Aerial Vehicles (UAVs) are becoming popular due to its versatile maneuvering and high pay load carrying capabilities. Military, navy and coastal guard makes crucial use of the amphibious UAVs which includes the working functionalities of bot
Externí odkaz:
https://doaj.org/article/e7f4f246c17d40a1a4ffd2385f69c363
Autor:
Palepu, Anil, Dhillon, Vikram, Niravath, Polly, Weng, Wei-Hung, Prasad, Preethi, Saab, Khaled, Tanno, Ryutaro, Cheng, Yong, Mai, Hanh, Burns, Ethan, Ajmal, Zainub, Kulkarni, Kavita, Mansfield, Philip, Webster, Dale, Barral, Joelle, Gottweis, Juraj, Schaekermann, Mike, Mahdavi, S. Sara, Natarajan, Vivek, Karthikesalingam, Alan, Tu, Tao
Large language models (LLMs) have shown remarkable progress in encoding clinical knowledge and responding to complex medical queries with appropriate clinical reasoning. However, their applicability in subspecialist or complex medical settings remain
Externí odkaz:
http://arxiv.org/abs/2411.03395
Autor:
Jain, Adit, Krishnamurthy, Vikram
This paper develops theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical signal processing and microeconomics. While both fields are mature, their application to decision-making by interacting LLMAs
Externí odkaz:
http://arxiv.org/abs/2411.01271
Autor:
McCullough, J., Amon, A., Legnani, E., Gruen, D., Roodman, A., Friedrich, O., MacCrann, N., Becker, M. R., Myles, J., Dodelson, S., Samuroff, S., Blazek, J., Prat, J., Honscheid, K., Pieres, A., Ferté, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Malagón, A. A. Plazas, Porredon, A., Farahi, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Flaugher, B., Yanny, B., Sánchez, C., Chang, C., Davis, C., To, C., Doux, C., Brooks, D., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Huterer, D., Rykoff, E. S., Gaztanaga, E., Huff, E. M., Suchyta, E., Sheldon, E., Sanchez, E., Tarsitano, F., Andrade-Oliveira, F., Castander, F. J., Bernstein, G. M., Gutierrez, G., Giannini, G., Tarle, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Ferrero, I., Elvin-Poole, J., Marshall, J. L., Muir, J., Weller, J., Zuntz, J., Carretero, J., DeRose, J., Frieman, J., Cordero, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Eckert, K., Romer, A. K., Bechtol, K., Herner, K., Kuehn, K., Secco, L. F., da Costa, L. N., Paterno, M., Soares-Santos, 21 M., Gatti, M., Raveri, M., Yamamoto, M., Smith, M., Kind, M. Carrasco, Troxel, M. A., Aguena, M., Jarvis, M., Swanson, M. E. C., Weaverdyck, N., Lahav, O., Doel, P., Wiseman, P., Miquel, R., Gruendl, R. A., Cawthon, R., Allam, S., Hinton, S. R., Bridle, S. L., Bocquet, S., Desai, S., Pandey, S., Everett, S., Lee, S., Shin, T., Palmese, A., Conselice, C., Burke, D. L., Buckley-Geer, E., Lima, M., Vincenzi, M., Pereira, M. E. S., Crocce, M., Schubnell, M., Jeffrey, N., Alves, O., Vikram, V., Zhang, Y., Collaboration, DES
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this b
Externí odkaz:
http://arxiv.org/abs/2410.22272
Interrupted X-ray computed tomography (X-CT) has been the common way to observe the deformation of materials during an experiment. While this approach is effective for quasi-static experiments, it has never been possible to reconstruct a full 3d tomo
Externí odkaz:
http://arxiv.org/abs/2410.20558
Autor:
Kwiecien, Matthew, Jeltema, Tesla, Leauthaud, Alexie, Huang, Song, Rykoff, Eli, Heydenreich, Sven, Lange, Johannes, Everett, Spencer, Zhou, Conghao, Kelly, Paige, Zhang, Yuanyuan, Shin, Tae-Hyeon, Golden-Marx, Jesse, Marshall, J. L., Aguena, M., Allam, S. S., Bocquet, S., Brooks, D., Rosell, A. Carnero, Carretero, J., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Lee, S., Miquel, R., Pieres, A., Malagón, A. A. Plazas, Romer, A. K., Samuroff, S., Sanchez, E., Santiago, B., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Vikram, V., Weaverdyck, N., Wiseman, P.
The number density and redshift evolution of optically selected galaxy clusters offer an independent measurement of the amplitude of matter fluctuations, $S_8$. However, recent results have shown that clusters chosen by the redMaPPer algorithm show r
Externí odkaz:
http://arxiv.org/abs/2410.20205
This paper considers the problem of annotating datapoints using an expert with only a few annotation rounds in a label-scarce setting. We propose soliciting reliable feedback on difficulty in annotating a datapoint from the expert in addition to grou
Externí odkaz:
http://arxiv.org/abs/2410.20041
Autor:
Singh, Aditya Vikram, Rathbun, Ethan, Graham, Emma, Oakley, Lisa, Boboila, Simona, Oprea, Alina, Chin, Peter
Recent advances in multi-agent reinforcement learning (MARL) have created opportunities to solve complex real-world tasks. Cybersecurity is a notable application area, where defending networks against sophisticated adversaries remains a challenging t
Externí odkaz:
http://arxiv.org/abs/2410.17351
Autor:
Arbore, Russel, Routh, Xavier, Noor, Abdul Rafae, Kothari, Akash, Yang, Haichao, Xu, Weihong, Pinge, Sumukh, Zhou, Minxuan, Adve, Vikram, Rosing, Tajana
Hyperdimensional Computing (HDC), a technique inspired by cognitive models of computation, has garnered significant interest in recent years. For example, HDC has been proposed as a more efficient and robust alternative basis for machine learning. Th
Externí odkaz:
http://arxiv.org/abs/2410.15179
Autor:
Yin, George, Krishnamurthy, Vikram
We analyze the finite sample regret of a decreasing step size stochastic gradient algorithm. We assume correlated noise and use a perturbed Lyapunov function as a systematic approach for the analysis. Finally we analyze the escape time of the iterate
Externí odkaz:
http://arxiv.org/abs/2410.08449