Zobrazeno 1 - 10
of 2 058
pro vyhledávání: '"P. Vaira"'
Autor:
Caputo, Sabrina, Vaira, Giusi
In this paper we consider the existence of standing waves for a coupled system of $k$ equations with Lotka-Volterra type interaction. We prove the existence of a standing wave solution with all nontrivial components satisfying a prescribed asymptotic
Externí odkaz:
http://arxiv.org/abs/2411.08428
Autor:
Di Vaira, Nathan J., Laniewski-Wollk, Lukasz, Johnson Jr., Raymond L., Aminossadati, Saiied M., Leonardi, Christopher R.
This work is the first computational study of proppant leak-off through coal cleats that accounts for proppant retention in cleats, occlusion formation at cleat entrances, the resulting control of fluid leak-off, and the influence of realistic cleat
Externí odkaz:
http://arxiv.org/abs/2410.14160
We show that the classical Brezis-Nirenberg problem $$\Delta u + |u|^{4 \over N-2} u + \varepsilon u = 0 ,\quad {\mbox {in}} \quad \Omega, \quad u= 0 , \quad {\mbox {on}} \quad \partial \Omega$$ admits nodal solutions clustering around a point on the
Externí odkaz:
http://arxiv.org/abs/2311.17436
We study the existence of standing waves for the following weakly coupled system of two Schr\"odinger equations in $\mathbb{R}^N$, $N=2,3$, \[ \begin{cases} i \hslash \partial_{t}\psi_{1}=-\frac{\hslash^2}{2m_{1}}\Delta \psi_{1}+ {V_1}(x)\psi_{1}-\mu
Externí odkaz:
http://arxiv.org/abs/2311.11648
Autor:
Cruz-Blázquez, Sergio, Vaira, Giusi
We consider the problem of prescribing the scalar and boundary mean curvatures via conformal deformation of the metric on a $n-$ dimensional compact Riemannian manifold. We deal with the case of negative scalar curvature $K$ and boundary mean curvatu
Externí odkaz:
http://arxiv.org/abs/2301.07396
We consider the classical geometric problem of prescribing the scalar and boundary mean curvatures via conformal deformation of the metric on a $n-$dimensional compact Riemannian manifold. We deal with the case of negative scalar curvature and positi
Externí odkaz:
http://arxiv.org/abs/2211.08219
We find infinitely many positive non-radial solutions for a system of Schr\"odinger equations with critical growth in a fully attractive or repulsive regime in presence of an external radial trapping potential.
Comment: 28 pages
Comment: 28 pages
Externí odkaz:
http://arxiv.org/abs/2206.09637
Autor:
Pistoia, Angela, Vaira, Giusi
We find positive non-radial solutions for a system of Schr\"odinger equations in a weak fully attractive or repulsive regime in presence of an external radial trapping potential that exhibits a maximum or a minimum at infinity.
Externí odkaz:
http://arxiv.org/abs/2203.01551
In this paper we consider a two component system of coupled non linear Schr\"odinger equations modeling the phase separation in the binary mixture of Bose-Einstein condensates and other related problems. Assuming the existence of solutions in the lim
Externí odkaz:
http://arxiv.org/abs/2201.07860
In this paper we consider nodal radial solutions of the problem $$ \begin{cases} -\Delta u=|u|^{2^*-2}u+\lambda u&\text{ in }B,\\ u=0&\text{ on }\partial B \end{cases} $$ where $2^*=\frac{2N}{N-2}$ with $3\le N\le6$ and $B$ is the unit ball of $\R^N$
Externí odkaz:
http://arxiv.org/abs/2010.12311