Zobrazeno 1 - 10
of 3 039
pro vyhledávání: '"P. Triantafyllou"'
Galaxy clusters are important cosmological probes that have helped to establish the $\mathrm{\Lambda}$CDM paradigm as the standard model of cosmology. However, recent tensions between different types of high-accuracy data highlight the need for novel
Externí odkaz:
http://arxiv.org/abs/2412.13304
Finite Element Analysis (FEA) is a powerful but computationally intensive method for simulating physical phenomena. Recent advancements in machine learning have led to surrogate models capable of accelerating FEA. Yet there are still limitations in d
Externí odkaz:
http://arxiv.org/abs/2412.04121
Autor:
Kouch, Pouya M., Liodakis, Ioannis, Fenu, Francesco, Zhang, Haocheng, Boula, Stella, Middei, Riccardo, Di Gesu, Laura, Paraschos, Georgios F., Agudo, Iván, Jorstad, Svetlana G., Lindfors, Elina, Marscher, Alan P., Krawczynski, Henric, Negro, Michela, Hu, Kun, Kim, Dawoon E., Cavazzuti, Elisabetta, Errando, Manel, Blinov, Dmitry, Gourni, Anastasia, Kiehlmann, Sebastian, Kourtidis, Angelos, Mandarakas, Nikos, Triantafyllou, Nikolaos, Vervelaki, Anna, Borman, George A., Kopatskaya, Evgenia N., Larionova, Elena G., Morozova, Daria A., Savchenko, Sergey S., Vasilyev, Andrey A., Troitskiy, Ivan S., Grishina, Tatiana S., Zhovtan, Alexey V., Aceituno, Francisco José, Bonnoli, Giacomo, Casanova, Víctor, Escudero, Juan, Agís-González, Beatriz, Husillos, César, Otero-Santos, Jorge, Piirola, Vilppu, Sota, Alfredo, Myserlis, Ioannis, Gurwell, Mark, Keating, Garrett K., Rao, Ramprasad, Angelakis, Emmanouil, Kraus, Alexander, Antonelli, Lucio Angelo, Bachetti, Matteo, Baldini, Luca, Baumgartner, Wayne H., Bellazzini, Ronaldo, Bianchi, Stefano, Bongiorno, Stephen D., Bonino, Raffaella, Brez, Alessandro, Bucciantini, Niccolò, Capitanio, Fiamma, Castellano, Simone, Chen, Chien-Ting, Ciprini, Stefano, Costa, Enrico, De Rosa, Alessandra, Del Monte, Ettore, Di Lalla, Niccolò, Di Marco, Alessandro, Donnarumma, Immacolata, Doroshenko, Victor, Dovčiak, Michal, Ehlert, Steven R., Enoto, Teruaki, Evangelista, Yuri, Fabiani, Sergio, Ferrazzoli, Riccardo, Garcia, Javier A., Gunji, Shuichi, Hayashida, Kiyoshi, Heyl, Jeremy, Iwakiri, Wataru, Kaaret, Philip, Karas, Vladimir, Kislat, Fabian, Kitaguchi, Takao, Kolodziejczak, Jeffery J., La Monaca, Fabio, Latronico, Luca, Maldera, Simone, Manfreda, Alberto, Marin, Frédéric, Marinucci, Andrea, Marshall, Herman L., Massaro, Francesco, Matt, Giorgio, Mitsuishi, Ikuyuki, Mizuno, Tsunefumi, Muleri, Fabio, Ng, Chi-Yung, O'Dell, Stephen L., Omodei, Nicola, Oppedisano, Chiara, Papitto, Alessandro, Pavlov, George G., Peirson, Abel Lawrence, Perri, Matteo, Pesce-Rollins, Melissa, Petrucci, Pierre-Olivier, Pilia, Maura, Possenti, Andrea, Poutanen, Juri, Puccetti, Simonetta, Ramsey, Brian D., Rankin, John, Ratheesh, Ajay, Roberts, Oliver J., Sgrò, Carmelo, Slane, Patrick, Soffitta, Paolo, Spandre, Gloria, Swartz, Douglas A., Tamagawa, Toru, Tavecchio, Fabrizio, Taverna, Roberto, Tawara, Yuzuru, Tennant, Allyn F., Thomas, Nicholas E., Tombesi, Francesco, Trois, Alessio, Tsygankov, Sergey S., Turolla, Roberto, Romani, Roger W., Vink, Jacco, Weisskopf, Martin C., Wu, Kinwah, Xie, Fei, Zane, Silvia
The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observati
Externí odkaz:
http://arxiv.org/abs/2411.16868
We address the challenge of explaining counterfactual outcomes in multi-agent Markov decision processes. In particular, we aim to explain the total counterfactual effect of an agent's action on the outcome of a realized scenario through its influence
Externí odkaz:
http://arxiv.org/abs/2410.12539
Autor:
Sun, Chuanhao, Triantafyllou, Thanos, Makris, Anthos, Drmač, Maja, Xu, Kai, Mai, Luo, Marina, Mahesh K.
View synthesis using Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) has demonstrated impressive fidelity in rendering real-world scenarios. However, practical methods for accurate and efficient epistemic Uncertainty Quantification (UQ) in
Externí odkaz:
http://arxiv.org/abs/2410.05468
A novel Material Point Method (MPM) is introduced for addressing frictional contact problems. In contrast to the standard multi-velocity field approach, this method employs a penalty method to evaluate contact forces at the discretised boundaries of
Externí odkaz:
http://arxiv.org/abs/2403.13534
When Reinforcement Learning (RL) agents are deployed in practice, they might impact their environment and change its dynamics. We propose a new framework to model this phenomenon, where the current environment depends on the deployed policy as well a
Externí odkaz:
http://arxiv.org/abs/2402.09838
This work introduces a framework to address the computational complexity inherent in Mixed-Integer Programming (MIP) models by harnessing the potential of deep learning. By employing deep learning, we construct problem-specific heuristics that identi
Externí odkaz:
http://arxiv.org/abs/2401.09556
Autor:
M. A. Salgado-Gálvez, M. Ordaz, B. Huerta, O. Garay, C. Avelar, E. Fagà, M. Kohrangi, P. Ceresa, G. Triantafyllou, U. T. Begaliev
Publikováno v:
Natural Hazards and Earth System Sciences, Vol 24, Pp 3851-3868 (2024)
A fully probabilistic earthquake risk model was developed for five countries in Central Asia, providing updated earthquake loss estimates with a higher level of detail on all components with respect to previous studies in the region. Additionally, a
Externí odkaz:
https://doaj.org/article/34ac11336ac84913ba4a872f9fed908e
Establishing causal relationships between actions and outcomes is fundamental for accountable multi-agent decision-making. However, interpreting and quantifying agents' contributions to such relationships pose significant challenges. These challenges
Externí odkaz:
http://arxiv.org/abs/2310.11334