Zobrazeno 1 - 10
of 82
pro vyhledávání: '"P. S. Chhabra"'
Autor:
A. T. Lambe, P. S. Chhabra, T. B. Onasch, W. H. Brune, J. F. Hunter, J. H. Kroll, M. J. Cummings, J. F. Brogan, Y. Parmar, D. R. Worsnop, C. E. Kolb, P. Davidovits
Publikováno v:
Atmospheric Chemistry and Physics, Vol 15, Iss 6, Pp 3063-3075 (2015)
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and severa
Externí odkaz:
https://doaj.org/article/8faecc1c82f84118bad4683c8842c81a
Autor:
P. S. Chhabra, A. T. Lambe, M. R. Canagaratna, H. Stark, J. T. Jayne, T. B. Onasch, P. Davidovits, J. R. Kimmel, D. R. Worsnop
Publikováno v:
Atmospheric Measurement Techniques, Vol 8, Iss 1, Pp 1-18 (2015)
Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, i
Externí odkaz:
https://doaj.org/article/a28ce561e8674916b9ff03ad167cacc8
Autor:
L. D. Yee, K. E. Kautzman, C. L. Loza, K. A. Schilling, M. M. Coggon, P. S. Chhabra, M. N. Chan, A. W. H. Chan, S. P. Hersey, J. D. Crounse, P. O. Wennberg, R. C. Flagan, J. H. Seinfeld
Publikováno v:
Atmospheric Chemistry and Physics, Vol 13, Iss 16, Pp 8019-8043 (2013)
The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laborator
Externí odkaz:
https://doaj.org/article/035a1c792ae742fd818cf08fed2f5a04
Autor:
P. O. Wennberg, J. H. Seinfeld, P. S. Chhabra, M. Chan, K. A. Schilling, L. D. Yee, N. C. Eddingsaas, C. L. Loza
Publikováno v:
Atmospheric Chemistry and Physics, Vol 12, Iss 16, Pp 7413-7427 (2012)
The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and
Externí odkaz:
https://doaj.org/article/6ab5cd1883754288bcd8f41593979567
Publikováno v:
Atmospheric Chemistry and Physics, Vol 12, Iss 1, Pp 151-167 (2012)
Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evo
Externí odkaz:
https://doaj.org/article/5c9b8ee4a6834062be78f2269c885f10
Autor:
P. S. Chhabra, N. L. Ng, M. R. Canagaratna, A. L. Corrigan, L. M. Russell, D. R. Worsnop, R. C. Flagan, J. H. Seinfeld
Publikováno v:
Atmospheric Chemistry and Physics, Vol 11, Iss 17, Pp 8827-8845 (2011)
Recently, graphical representations of aerosol mass spectrometer (AMS) spectra and elemental composition have been developed to explain the oxidative and aging processes of secondary organic aerosol (SOA). It has been shown previously that oxygenated
Externí odkaz:
https://doaj.org/article/9a91067c48b44eddb0b590ec2e401493
Publikováno v:
Atmospheric Chemistry and Physics, Vol 11, Iss 13, Pp 6465-6474 (2011)
Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2
Externí odkaz:
https://doaj.org/article/ac72f59ff627450e9c2002a99941a3fd
Autor:
P. O. Wennberg, R. C. Flagan, L. D. Yee, J. D. Crounse, C. L. Loza, P. S. Chhabra, J. D. Surratt, A. W. H. Chan, M. N. Chan, J. H. Seinfeld
Publikováno v:
Atmospheric Chemistry and Physics, Vol 10, Iss 15, Pp 7169-7188 (2010)
Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (S
Externí odkaz:
https://doaj.org/article/48d7847d72d64de286373984b642aa17
Autor:
N. L. Ng, M. R. Canagaratna, Q. Zhang, J. L. Jimenez, J. Tian, I. M. Ulbrich, J. H. Kroll, K. S. Docherty, P. S. Chhabra, R. Bahreini, S. M. Murphy, J. H. Seinfeld, L. Hildebrandt, N. M. Donahue, P. F. DeCarlo, V. A. Lanz, A. S. H. Prévôt, E. Dinar, Y. Rudich, D. R. Worsnop
Publikováno v:
Atmospheric Chemistry and Physics, Vol 10, Iss 10, Pp 4625-4641 (2010)
In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, provide a holistic overview of
Externí odkaz:
https://doaj.org/article/01e66fdc9ef34ea1b99fbbd68aaf7f3b
Publikováno v:
Atmospheric Chemistry and Physics, Vol 10, Iss 9, Pp 4111-4131 (2010)
The elemental composition of laboratory chamber secondary organic aerosol (SOA) from glyoxal uptake, α-pinene ozonolysis, isoprene photooxidation, single-ring aromatic photooxidation, and naphthalene photooxidation is evaluated using Aerodyne high-r
Externí odkaz:
https://doaj.org/article/3235c0e14a5e4422b0f34ece176c653c