Zobrazeno 1 - 10
of 99
pro vyhledávání: '"P. Poteaux"'
Autor:
Poteaux, Adrien, Weimann, Martin
We obtain new complexity bounds for computing a triangular integral basis of a number field or a function field. We reach for function fields a softly linear cost with respect to the size of the output when the residual characteristic is zero or big
Externí odkaz:
http://arxiv.org/abs/2405.13577
We consider the problem of answering connectivity queries on a real algebraic curve. The curve is given as the real trace of an algebraic curve, assumed to be in generic position, and being defined by some rational parametrizations. The query points
Externí odkaz:
http://arxiv.org/abs/2302.11347
Autor:
Alberich-Carramiñana, Maria, Guàrdia, Jordi, Nart, Enric, Poteaux, Adrien, Roé, Joaquim, Weimann, Martin
Given a valued field $(K,v)$ and an irreducible polynomial $g\in K[x]$, we survey the ideas of Ore, Maclane, Okutsu, Montes, Vaqui\'e and Herrera-Olalla-Mahboub-Spivakovsky, leading (under certain conditions) to an algorithm to find the factorization
Externí odkaz:
http://arxiv.org/abs/2207.02139
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Immunology, Vol 14 (2023)
Schistosomiasis is considered as a significant public health problem, imposing a deeper understanding of the intricate interplay between parasites and their hosts. Unfortunately, current invasive methodologies employed to study the compatibility and
Externí odkaz:
https://doaj.org/article/c6869d76569d4ac883c6b56b3a07a5b5
Autor:
Poteaux, Adrien, Weimann, Martin
Germs of plane curve singularities can be classified accordingly to their equisingularity type. For singularities over C, this important data coincides with the topological class. In this paper, we characterise a family of singularities, containing i
Externí odkaz:
http://arxiv.org/abs/1911.05596
Autor:
Poteaux, Adrien, Weimann, Martin
We provide an irreducibility test in the ring K[[x]][y] whose complexity is quasi-linear with respect to the discriminant valuation, assuming the input polynomial F square-free and K a perfect field of characteristic zero or greater than deg(F). The
Externí odkaz:
http://arxiv.org/abs/1911.03551
Autor:
Poteaux, Adrien, Weimann, Martin
We provide an irreducibility test in the ring K[[x]][y] whose complexity is quasi-linear with respect to the valuation of the discriminant, assuming the input polynomial F square-free and K a perfect field of characteristic zero or greater than deg(F
Externí odkaz:
http://arxiv.org/abs/1904.00286
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Poteaux, Adrien, Weimann, Martin
Let $F\in \mathbb{K}[X, Y ]$ be a polynomial of total degree $D$ defined over a perfect field $\mathbb{K}$ of characteristic zero or greater than $D$. Assuming $F$ separable with respect to $Y$ , we provide an algorithm that computes the singular par
Externí odkaz:
http://arxiv.org/abs/1708.09067