Zobrazeno 1 - 10
of 10 894
pro vyhledávání: '"P. Parekh"'
A series of work [GKK+08, Kal22, KPV24] has shown that asymptotic advantages in space complexity are possible for quantum algorithms over their classical counterparts in the streaming model. We give a simple quantum sketch that encompasses all these
Externí odkaz:
http://arxiv.org/abs/2410.18922
Autor:
Parekh, Tanmay, Kwan, Jeffrey, Yu, Jiarui, Johri, Sparsh, Ahn, Hyosang, Muppalla, Sreya, Chang, Kai-Wei, Wang, Wei, Peng, Nanyun
Social media is often the first place where communities discuss the latest societal trends. Prior works have utilized this platform to extract epidemic-related information (e.g. infections, preventive measures) to provide early warnings for epidemic
Externí odkaz:
http://arxiv.org/abs/2410.18393
Despite the growing use of deep neural networks in safety-critical decision-making, their inherent black-box nature hinders transparency and interpretability. Explainable AI (XAI) methods have thus emerged to understand a model's internal workings, a
Externí odkaz:
http://arxiv.org/abs/2410.01482
A human interacting with a robot often forms predictions of what the robot will do next. For instance, based on the recent behavior of an autonomous car, a nearby human driver might predict that the car is going to remain in the same lane. It is impo
Externí odkaz:
http://arxiv.org/abs/2409.13533
Deep operator networks (DeepONet) and neural operators have gained significant attention for their ability to map infinite-dimensional function spaces and perform zero-shot super-resolution. However, these models often require large datasets for effe
Externí odkaz:
http://arxiv.org/abs/2409.09207
Recent successes in producing rigorous approximation algorithms for local Hamiltonian problems such as Quantum Max Cut have exploited connections to unconstrained classical discrete optimization problems. We initiate the study of approximation algori
Externí odkaz:
http://arxiv.org/abs/2409.04433
Autor:
Dahal, Sumit, Ade, Peter A. R., Anderson, Christopher J., Barlis, Alyssa, Barrentine, Emily M., Beeman, Jeffrey W., Bellis, Nicholas, Bolatto, Alberto D., Braianova, Victoria, Breysse, Patrick C., Bulcha, Berhanu T., Cataldo, Giuseppe, Colazo, Felipe A., Chevres-Fernandez, Lee-Roger, Cho, Chullhee, Chmaytelli, Danny S., Connors, Jake A., Costen, Nicholas P., Cursey, Paul W., Ehsan, Negar, Essinger-Hileman, Thomas M., Glenn, Jason, Golec, Joseph E., Hays-Wehle, James P., Hess, Larry A., Jahromi, Amir E., Jenkins, Trevian, Kimball, Mark O., Kogut, Alan J., Kramer, Samuel H., Leung, Nicole, Lowe, Luke N., Mauskopf, Philip D., McMahon, Jeffrey J., Mikula, Vilem, Mirzaei, Mona, Moseley, Samuel H., Mugge-Durum, Jonas W., Nellis, Jacob, Noroozian, Omid, Okun, Kate, Oxholm, Trevor, Parekh, Tatsat, Pen, Ue-Li, Pullen, Anthony R., Rahmani, Maryam, Ramirez, Mathias M., Roberson, Cody, Rodriguez, Samelys, Roselli, Florian, Sapkota, Deepak, Shire, Konrad, Siebert, Gage L., Siddique, Faizah, Sinclair, Adrian K., Somerville, Rachel S., Stephenson, Ryan, Stevenson, Thomas R., Switzer, Eric R., Termini, Jared, Timbie, Peter T., Trenkamp, Justin, Tucker, Carole E., Visbal, Elijah, Volpert, Carolyn G., Watson, Joseph, Weeks, Eric, Wollack, Edward J., Yang, Shengqi, Yung, Aaron
Publikováno v:
Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, 131022I (16 August 2024)
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cr
Externí odkaz:
http://arxiv.org/abs/2409.02847
The long runtime associated with simulating multidisciplinary systems challenges the use of Bayesian optimization for multidisciplinary design optimization (MDO). This is particularly the case if the coupled system is modeled in a partitioned manner
Externí odkaz:
http://arxiv.org/abs/2408.08691
Autor:
Imagen-Team-Google, Baldridge, Jason, Bauer, Jakob, Bhutani, Mukul, Brichtova, Nicole, Bunner, Andrew, Chan, Kelvin, Chen, Yichang, Dieleman, Sander, Du, Yuqing, Eaton-Rosen, Zach, Fei, Hongliang, de Freitas, Nando, Gao, Yilin, Gladchenko, Evgeny, Colmenarejo, Sergio Gómez, Guo, Mandy, Haig, Alex, Hawkins, Will, Hu, Hexiang, Huang, Huilian, Igwe, Tobenna Peter, Kaplanis, Christos, Khodadadeh, Siavash, Kim, Yelin, Konyushkova, Ksenia, Langner, Karol, Lau, Eric, Luo, Shixin, Mokrá, Soňa, Nandwani, Henna, Onoe, Yasumasa, Oord, Aäron van den, Parekh, Zarana, Pont-Tuset, Jordi, Qi, Hang, Qian, Rui, Ramachandran, Deepak, Rane, Poorva, Rashwan, Abdullah, Razavi, Ali, Riachi, Robert, Srinivasan, Hansa, Srinivasan, Srivatsan, Strudel, Robin, Uria, Benigno, Wang, Oliver, Wang, Su, Waters, Austin, Wolff, Chris, Wright, Auriel, Xiao, Zhisheng, Xiong, Hao, Xu, Keyang, van Zee, Marc, Zhang, Junlin, Zhang, Katie, Zhou, Wenlei, Zolna, Konrad, Aboubakar, Ola, Akbulut, Canfer, Akerlund, Oscar, Albuquerque, Isabela, Anderson, Nina, Andreetto, Marco, Aroyo, Lora, Bariach, Ben, Barker, David, Ben, Sherry, Berman, Dana, Biles, Courtney, Blok, Irina, Botadra, Pankil, Brennan, Jenny, Brown, Karla, Buckley, John, Bunel, Rudy, Bursztein, Elie, Butterfield, Christina, Caine, Ben, Carpenter, Viral, Casagrande, Norman, Chang, Ming-Wei, Chang, Solomon, Chaudhuri, Shamik, Chen, Tony, Choi, John, Churbanau, Dmitry, Clement, Nathan, Cohen, Matan, Cole, Forrester, Dektiarev, Mikhail, Du, Vincent, Dutta, Praneet, Eccles, Tom, Elue, Ndidi, Feden, Ashley, Fruchter, Shlomi, Garcia, Frankie, Garg, Roopal, Ge, Weina, Ghazy, Ahmed, Gipson, Bryant, Goodman, Andrew, Górny, Dawid, Gowal, Sven, Gupta, Khyatti, Halpern, Yoni, Han, Yena, Hao, Susan, Hayes, Jamie, Hertz, Amir, Hirst, Ed, Hou, Tingbo, Howard, Heidi, Ibrahim, Mohamed, Ike-Njoku, Dirichi, Iljazi, Joana, Ionescu, Vlad, Isaac, William, Jana, Reena, Jennings, Gemma, Jenson, Donovon, Jia, Xuhui, Jones, Kerry, Ju, Xiaoen, Kajic, Ivana, Ayan, Burcu Karagol, Kelly, Jacob, Kothawade, Suraj, Kouridi, Christina, Ktena, Ira, Kumakaw, Jolanda, Kurniawan, Dana, Lagun, Dmitry, Lavitas, Lily, Lee, Jason, Li, Tao, Liang, Marco, Li-Calis, Maggie, Liu, Yuchi, Alberca, Javier Lopez, Lu, Peggy, Lum, Kristian, Ma, Yukun, Malik, Chase, Mellor, John, Mosseri, Inbar, Murray, Tom, Nematzadeh, Aida, Nicholas, Paul, Oliveira, João Gabriel, Ortiz-Jimenez, Guillermo, Paganini, Michela, Paine, Tom Le, Paiss, Roni, Parrish, Alicia, Peckham, Anne, Peswani, Vikas, Petrovski, Igor, Pfaff, Tobias, Pirozhenko, Alex, Poplin, Ryan, Prabhu, Utsav, Qi, Yuan, Rahtz, Matthew, Rashtchian, Cyrus, Rastogi, Charvi, Raul, Amit, Rebuffi, Sylvestre-Alvise, Ricco, Susanna, Riedel, Felix, Robinson, Dirk, Rohatgi, Pankaj, Rosgen, Bill, Rumbley, Sarah, Ryu, Moonkyung, Salgado, Anthony, Singla, Sahil, Schroff, Florian, Schumann, Candice, Shah, Tanmay, Shillingford, Brendan, Shivakumar, Kaushik, Shtatnov, Dennis, Singer, Zach, Sluzhaev, Evgeny, Sokolov, Valerii, Sottiaux, Thibault, Stimberg, Florian, Stone, Brad, Stutz, David, Su, Yu-Chuan, Tabellion, Eric, Tang, Shuai, Tao, David, Thomas, Kurt, Thornton, Gregory, Toor, Andeep, Udrescu, Cristian, Upadhyay, Aayush, Vasconcelos, Cristina, Vasiloff, Alex, Voynov, Andrey, Walker, Amanda, Wang, Luyu, Wang, Miaosen, Wang, Simon, Wang, Stanley, Wang, Qifei, Wang, Yuxiao, Weisz, Ágoston, Wiles, Olivia, Wu, Chenxia, Xu, Xingyu Federico, Xue, Andrew, Yang, Jianbo, Yu, Luo, Yurtoglu, Mete, Zand, Ali, Zhang, Han, Zhang, Jiageng, Zhao, Catherine, Zhaxybay, Adilet, Zhou, Miao, Zhu, Shengqi, Zhu, Zhenkai, Bloxwich, Dawn, Bordbar, Mahyar, Cobo, Luis C., Collins, Eli, Dai, Shengyang, Doshi, Tulsee, Dragan, Anca, Eck, Douglas, Hassabis, Demis, Hsiao, Sissie, Hume, Tom, Kavukcuoglu, Koray, King, Helen, Krawczyk, Jack, Li, Yeqing, Meier-Hellstern, Kathy, Orban, Andras, Pinsky, Yury, Subramanya, Amar, Vinyals, Oriol, Yu, Ting, Zwols, Yori
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. I
Externí odkaz:
http://arxiv.org/abs/2408.07009
Question Under Discussion (QUD) is a discourse framework that uses implicit questions to reveal discourse relationships between sentences. In QUD parsing, each sentence is viewed as an answer to a question triggered by an anchor sentence in prior con
Externí odkaz:
http://arxiv.org/abs/2408.01046