Zobrazeno 1 - 10
of 17 781
pro vyhledávání: '"P. P. Goswami"'
In this article, we introduce \textsf{LASER} (Locally Adaptive Smoothing Estimator for Regression), a computationally efficient locally adaptive nonparametric regression method that performs variable bandwidth local polynomial regression. We prove th
Externí odkaz:
http://arxiv.org/abs/2412.19802
In this study, we investigated the anisotropy of diffusive Ultra-High Energy Cosmic Rays (UHECRs) by employing three cosmological models: two models from the $f(R, T)$ gravity theory and the other is the standard $\Lambda$CDM model. The primary objec
Externí odkaz:
http://arxiv.org/abs/2412.17494
In this work, we have implemented an accurate machine-learning approach for predicting various key analog and RF parameters of Negative Capacitance Field-Effect Transistors (NCFETs). Visual TCAD simulator and the Python high-level language were emplo
Externí odkaz:
http://arxiv.org/abs/2412.14216
Autor:
Nishihaya, Shinichi, Jardine, Malcolm J. A., Inbar, Hadass S., Goswami, Aranya, Dong, Jason T., Engel, Aaron N., Chang, Yu-Hao, Dempsey, Connor P., Hashimoto, Makoto, Lu, Donghui, Marom, Noa, Palmstrøm, Chris J.
The interplay between half-metallic ferromagnetism and spin-orbit coupling within the inversion symmetry-broken structure of half Heuslers provides an ideal platform for various spintronics functionalities. Taking advantage of good lattice matching,
Externí odkaz:
http://arxiv.org/abs/2412.11770
Autor:
Suri, Manan, Mathur, Puneet, Dernoncourt, Franck, Goswami, Kanika, Rossi, Ryan A., Manocha, Dinesh
Understanding information from a collection of multiple documents, particularly those with visually rich elements, is important for document-grounded question answering. This paper introduces VisDoMBench, the first comprehensive benchmark designed to
Externí odkaz:
http://arxiv.org/abs/2412.10704
Autor:
Ward, David, Aoki, Sinya, Aoki, Yasumichi, Fukaya, Hidenori, Hashimoto, Shoji, Kanamori, Issaku, Kaneko, Takashi, Goswami, Jishnu, Zhang, Yu
We report on the ongoing study of symmetry of $N_f=2$ QCD around the critical temperature. Our simulations of $N_f = 2$ QCD employ the M\"obius domain-wall fermion action with residual mass $\sim 1\mbox{MeV}$ or less, maintaining a good chiral symmet
Externí odkaz:
http://arxiv.org/abs/2412.06574
Large Language Models (LLMs) based on transformers achieve cutting-edge results on a variety of applications. However, their enormous size and processing requirements make deployment on devices with constrained resources extremely difficult. Among va
Externí odkaz:
http://arxiv.org/abs/2412.05225
Big data is transforming scientific progress by enabling the discovery of novel models, enhancing existing frameworks, and facilitating precise uncertainty quantification, while advancements in scientific machine learning complement this by providing
Externí odkaz:
http://arxiv.org/abs/2412.05133
Autor:
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguado, T., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Axani, S. N., Babu, R., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brisson-Tsavoussis, Z., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Cochling, C., Coleman, A., Coleman, P., Collin, G. H., Connolly, A., Conrad, J. M., Corley, R., Cowen, D. F., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Durnford, D., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Esmail, W., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Griffin, S., Griswold, S., Groth, K. M., Guevel, D., Günther, C., Gutjahr, P., Gruchot, K., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamacher, L., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Hardy, A., Hayes, W., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hmaid, R., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kobayashi, Y., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kowalski, M., Kozynets, T., Krieger, N., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Mand, A., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Moy, A., Mukherjee, T., Naab, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Parrish, V., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Pyras, L., Raab, C., Rack-Helleis, J., Rad, N., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, E., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Schwirn, S., Sclafani, S., Seckel, D., Seen, L., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Simmons, A., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thorpe, A., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Carrasco, S. Vergara, Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, M., Woodward, H., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zegarelli, A., Zhang, S., Zhang, Z., Zhelnin, P., Zilberman, P., Zimmerman, M.
We analyzed the 7.92$\times 10^{11}$ cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from May 13, 2011, when the fully constructed experiment started to take data, to May 12, 2023. This dataset provides an up-to-date cosm
Externí odkaz:
http://arxiv.org/abs/2412.05046
While deep-learning models have demonstrated skillful El Ni\~no Southern Oscillation (ENSO) forecasts up to one year in advance, they are predominantly trained on climate model simulations that provide thousands of years of training data at the expen
Externí odkaz:
http://arxiv.org/abs/2412.03743