Zobrazeno 1 - 10
of 96
pro vyhledávání: '"P. Nedyalko"'
Autor:
C. Dudreuilh, S. Basu, O. Shaw, H. Burton, N. Mamode, F. Harris, T. Tree, P. Nedyalko, M. Terranova-Barberio, G. Lombardi, C. Scottà, A. Dorling
Publikováno v:
Frontiers in Transplantation, Vol 2 (2023)
IntroductionHighly sensitised (HS) patients represent up to 30% of patients on the kidney transplant waiting list. When they are transplanted, they have a high risk of acute/chronic rejection and long-term allograft loss. Regulatory T cells (Tregs) (
Externí odkaz:
https://doaj.org/article/83af0ba9d6d745ff804d4f2b117e597d
Generalist vision models aim for one and the same architecture for a variety of vision tasks. While such shared architecture may seem attractive, generalist models tend to be outperformed by their bespoken counterparts, especially in the case of pano
Externí odkaz:
http://arxiv.org/abs/2408.16504
Autor:
Bikov, Aleksandar, Nenov, Nedyalko
Publikováno v:
Australas. J. Comb., 77:35-50, 2020
The graph $G$ is called a $(3, 3)$-Ramsey graph if in every coloring of the edges of $G$ in two colors there is a monochromatic triangle. The minimum number of vertices of the $(3, 3)$-Ramsey graphs without 4-cliques is denoted by $F_e(3, 3; 4)$. The
Externí odkaz:
http://arxiv.org/abs/1904.01937
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bikov, Aleksandar, Nenov, Nedyalko
Publikováno v:
Ann. Univ. Sofia Fac. Math. Inform., 104:39-53, 2017
For a graph $G$ the expression $G \overset{v}{\rightarrow} (a_1, ..., a_s)$ means that for every $s$-coloring of the vertices of $G$ there exists $i \in \{1, ..., s\}$ such that there is a monochromatic $a_i$-clique of color $i$. The vertex Folkman n
Externí odkaz:
http://arxiv.org/abs/1711.01535
Autor:
Bikov, Aleksandar, Nenov, Nedyalko
Publikováno v:
Geombinatorics, 27(1):5-14, 2017
The set of the graphs which do not contain the complete graph on $q$ vertices $K_q$ and have the property that in every coloring of their edges in two colors there exist a monochromatic triangle is denoted by $\mathcal{H}_e(3, 3; q)$. The edge Folkma
Externí odkaz:
http://arxiv.org/abs/1609.03468
Autor:
Bikov, Aleksandar, Nenov, Nedyalko
Publikováno v:
Journal of Combinatorial Mathematics and Combinatorial Computing, 109:213-243, 2019
Let $G$ be a graph and $a_1, ..., a_s$ be positive integers. Then $G \overset{v}{\rightarrow} (a_1, ..., a_s)$ means that for every coloring of the vertices of $G$ in $s$ colors there exists $i \in \{1, ..., s\}$, such that there is a monochromatic $
Externí odkaz:
http://arxiv.org/abs/1512.02051
Autor:
Bikov, Aleksandar, Nenov, Nedyalko
Publikováno v:
Mathematics and Education. Proceedings of the 45th Spring Conference of the Union of Bulgarian Mathematicians, 45:113-123, 2016
Let $a_1, ..., a_s$ be positive integers. For a graph $G$ the expression $$ G \overset{v}{\rightarrow} (a_1, ..., a_s) $$ means that for every coloring of the vertices of $G$ in $s$ colors ($s$-coloring) there exists $i \in \{1, ..., s\}$, such that
Externí odkaz:
http://arxiv.org/abs/1511.02125
Autor:
Bikov, Aleksandar, Nenov, Nedyalko
Publikováno v:
Journal of Combinatorial Mathematics and Combinatorial Computing, 103:171-198, 2017
For a graph $G$ the expression $G \overset{v}{\rightarrow} (a_1, ..., a_s)$ means that for any $s$-coloring of the vertices of $G$ there exists $i \in \{1, ..., s\}$ such that there is a monochromatic $a_i$-clique of color $i$. The vertex Folkman num
Externí odkaz:
http://arxiv.org/abs/1503.08444
Autor:
Silvia C. Trevelin, Suzanne Pickering, Katrina Todd, Cynthia Bishop, Michael Pitcher, Jose Garrido Mesa, Lucia Montorsi, Filomena Spada, Nedyalko Petrov, Anna Green, Manu Shankar-Hari, Stuart J.D. Neil, Jo Spencer
Publikováno v:
Frontiers in Immunology, Vol 13 (2022)
Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of
Externí odkaz:
https://doaj.org/article/14c0a19d8fde40d3a75d23e149ec16ed