Zobrazeno 1 - 10
of 182
pro vyhledávání: '"P. Naredla"'
Autor:
Mehrabian, Abbas, Anand, Ankit, Kim, Hyunjik, Sonnerat, Nicolas, Balog, Matej, Comanici, Gheorghe, Berariu, Tudor, Lee, Andrew, Ruoss, Anian, Bulanova, Anna, Toyama, Daniel, Blackwell, Sam, Paredes, Bernardino Romera, Veličković, Petar, Orseau, Laurent, Lee, Joonkyung, Naredla, Anurag Murty, Precup, Doina, Wagner, Adam Zsolt
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erd\H{o}s, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this pro
Externí odkaz:
http://arxiv.org/abs/2311.03583
Autor:
Lubiw, Anna, Naredla, Anurag Murty
The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algo
Externí odkaz:
http://arxiv.org/abs/2303.09702
Our interest is in paths between pairs of vertices that go through at least one of a subset of the vertices known as beer vertices. Such a path is called a beer path, and the beer distance between two vertices is the length of the shortest beer path.
Externí odkaz:
http://arxiv.org/abs/2209.14401
The input to the distant representatives problem is a set of $n$ objects in the plane and the goal is to find a representative point from each object while maximizing the distance between the closest pair of points. When the objects are axis-aligned
Externí odkaz:
http://arxiv.org/abs/2108.07751
Autor:
Lubiw, Anna, Naredla, Anurag Murty
We introduce the \emph{visibility center} of a set of points inside a polygon -- a point $c_V$ such that the maximum geodesic distance from $c_V$ to see any point in the set is minimized. For a simple polygon of $n$ vertices and a set of $m$ points i
Externí odkaz:
http://arxiv.org/abs/2108.07366
Autor:
Biedl, Therese, Bulatovic, Pavle, Irvine, Veronika, Lubiw, Anna, Merkel, Owen, Naredla, Anurag Murty
Given two $n$-vertex polygons, $P=(p_1, \ldots, p_n)$ lying in the $xy$-plane at $z=0$, and $P'=(p'_1, \ldots, p'_n)$ lying in the $xy$-plane at $z=1$, a banded surface is a triangulated surface homeomorphic to an annulus connecting $P$ and $P'$ such
Externí odkaz:
http://arxiv.org/abs/2004.05946
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Moteb Khobrani, Geetha Kandasamy, Rajalakshimi Vasudevan, AbdulAziz Alhossan, Ranadheer Chowdary Puvvada, Praveen Devanandan, Rajeshri Dhurke, Manusri Naredla
Publikováno v:
Saudi Pharmaceutical Journal, Vol 31, Iss 5, Pp 655-658 (2023)
Background: Diabetic Peripheral Neuropathy is one of the most important and significantly prevalent microvascular complications of Diabetes Mellitus. Pyridoxine is a key nutrient for protecting nerve health. The objective of this research is to study
Externí odkaz:
https://doaj.org/article/4b608036fff44ff2ae0a45798ae0b3c0
Autor:
Biniaz, Ahmad, Jain, Kshitij, Lubiw, Anna, Masárová, Zuzana, Miltzow, Tillmann, Mondal, Debajyoti, Naredla, Anurag Murty, Tkadlec, Josef, Turcotte, Alexi
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, vol. 24, no 2, Discrete Algorithms (January 18, 2023) dmtcs:8383
The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number
Externí odkaz:
http://arxiv.org/abs/1903.06981
Autor:
Ahmad Biniaz, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, Alexi Turcotte
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 24, no 2, Iss Discrete Algorithms (2023)
The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number
Externí odkaz:
https://doaj.org/article/f7a6fe26708146ef8231303a69b3523e