Zobrazeno 1 - 10
of 20
pro vyhledávání: '"P. J. Turpin"'
Autor:
N. Sareen, A. G. Carlton, J. D. Surratt, A. Gold, B. Lee, F. D. Lopez-Hilfiker, C. Mohr, J. A. Thornton, Z. Zhang, Y. B. Lim, B. J. Turpin
Publikováno v:
Atmospheric Chemistry and Physics, Vol 16, Pp 14409-14420 (2016)
Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abun
Externí odkaz:
https://doaj.org/article/ce679389eb034322a89812ae7f3f1ece
Publikováno v:
Atmospheric Chemistry and Physics, Vol 16, Pp 12631-12647 (2016)
Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal-
Externí odkaz:
https://doaj.org/article/a8eac47d19e54d098cee04a6e7e89835
Autor:
S. Sandrini, D. van Pinxteren, L. Giulianelli, H. Herrmann, L. Poulain, M. C. Facchini, S. Gilardoni, M. Rinaldi, M. Paglione, B. J. Turpin, F. Pollini, S. Bucci, N. Zanca, S. Decesari
Publikováno v:
Atmospheric Chemistry and Physics, Vol 16, Pp 10879-10897 (2016)
The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and
Externí odkaz:
https://doaj.org/article/8d8eb395323045188cbe8c710c378314
Autor:
A. P. Sullivan, N. Hodas, B. J. Turpin, K. Skog, F. N. Keutsch, S. Gilardoni, M. Paglione, M. Rinaldi, S. Decesari, M. C. Facchini, L. Poulain, H. Herrmann, A. Wiedensohler, E. Nemitz, M. M. Twigg, J. L. Collett Jr.
Publikováno v:
Atmospheric Chemistry and Physics, Vol 16, Pp 8095-8108 (2016)
Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative ro
Externí odkaz:
https://doaj.org/article/6d08a8aed08c4dfd93992f766bd17855
Autor:
Y. B. Lim, B. J. Turpin
Publikováno v:
Atmospheric Chemistry and Physics, Vol 15, Iss 22, Pp 12867-12877 (2015)
Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is considered a potentially important atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2–C3)
Externí odkaz:
https://doaj.org/article/9a34d14c07da4bd9b3e954960ba497c6
Autor:
A. G. Carlton, B. J. Turpin
Publikováno v:
Atmospheric Chemistry and Physics, Vol 13, Iss 20, Pp 10203-10214 (2013)
Gas-phase water-soluble organic matter (WSOMg) is ubiquitous in the troposphere. In the summertime, the potential for these gases to partition to particle-phase liquid water (H2Optcl) where they can form secondary organic aerosol (SOAAQ) is high in t
Externí odkaz:
https://doaj.org/article/9473058b92e14081af9ccc9f1f3726ab
Publikováno v:
Atmospheric Chemistry and Physics, Vol 13, Iss 17, Pp 8651-8667 (2013)
Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clou
Externí odkaz:
https://doaj.org/article/c6694b31b15946c98ff98c073a31dc4a
Publikováno v:
Atmospheric Chemistry and Physics, Vol 12, Iss 2, Pp 801-813 (2012)
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere,
Externí odkaz:
https://doaj.org/article/3f70977fd86a4c1387b0c1a713746725
Publikováno v:
Atmospheric Chemistry and Physics, Vol 11, Iss 21, Pp 11069-11102 (2011)
Progress has been made over the past decade in predicting secondary organic aerosol (SOA) mass in the atmosphere using vapor pressure-driven partitioning, which implies that SOA compounds are formed in the gas phase and then partition to an organic p
Externí odkaz:
https://doaj.org/article/2db39786420344ac877ce73d05794b2b
Publikováno v:
Atmospheric Chemistry and Physics, Vol 10, Iss 21, Pp 10521-10539 (2010)
There is a growing understanding that secondary organic aerosol (SOA) can form through reactions in atmospheric waters (i.e., clouds, fogs, and aerosol water). In clouds and wet aerosols, water-soluble organic products of gas-phase photochemistry dis
Externí odkaz:
https://doaj.org/article/fcb9b456bbd94f54b4c01625df7a74ac